About the Project

ultraspherical

AdvancedHelp

(0.000 seconds)

11—20 of 33 matching pages

11: 18.14 Inequalities
Ultraspherical
18.14.4 | C n ( λ ) ( x ) | C n ( λ ) ( 1 ) = ( 2 λ ) n n ! , 1 x 1 , λ > 0 .
18.14.5 | C 2 m ( λ ) ( x ) | | C 2 m ( λ ) ( 0 ) | = | ( λ ) m m ! | , 1 x 1 , 1 2 < λ < 0 ,
18.14.6 | C 2 m + 1 ( λ ) ( x ) | < 2 ( λ ) m + 1 ( ( 2 m + 1 ) ( 2 λ + 2 m + 1 ) ) 1 2 m ! , 1 x 1 , 1 2 < λ < 0 .
18.14.7 ( n + λ ) 1 λ ( 1 x 2 ) 1 2 λ | C n ( λ ) ( x ) | < 2 1 λ Γ ( λ ) , 1 x 1 , 0 < λ < 1 .
12: 18.5 Explicit Representations
See (Erdélyi et al., 1953b, §10.9(37)) for a related formula for ultraspherical polynomials.
§18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
Ultraspherical
For corresponding formulas for Chebyshev, Legendre, and the Hermite 𝐻𝑒 n polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). … Similarly in the cases of the ultraspherical polynomials C n ( λ ) ( x ) and the Laguerre polynomials L n ( α ) ( x ) we assume that λ > 1 2 , λ 0 , and α > 1 , unless stated otherwise. …
13: 18.11 Relations to Other Functions
Ultraspherical
18.11.1 𝖯 n m ( x ) = ( 1 2 ) m ( 2 ) m ( 1 x 2 ) 1 2 m C n m ( m + 1 2 ) ( x ) = ( n + 1 ) m ( 2 ) m ( 1 x 2 ) 1 2 m P n m ( m , m ) ( x ) , 0 m n .
14: 15.9 Relations to Other Functions
Gegenbauer (or Ultraspherical)
This is a generalization of Gegenbauer (or ultraspherical) polynomials (§18.3). …
15: 1.10 Functions of a Complex Variable
Ultraspherical polynomials have generating function
1.10.28 F ( x , λ ; z ) = ( 1 2 x z + z 2 ) λ = n = 0 C n ( λ ) ( x ) z n , | z | < 1 .
1.10.29 n = 0 d d x C n ( λ ) ( x ) z n = 2 λ z ( 1 2 x z + z 2 ) λ 1 = n = 0 2 λ C n ( λ + 1 ) ( x ) z n + 1 ,
and hence d d x C n ( λ ) ( x ) = 2 λ C n 1 ( λ + 1 ) ( x ) , that is (18.9.19). The recurrence relation for C n ( λ ) ( x ) in §18.9(i) follows from ( 1 2 x z + z 2 ) z F ( x , λ ; z ) = 2 λ ( x z ) F ( x , λ ; z ) , and the contour integral representation for C n ( λ ) ( x ) in §18.10(iii) is just (1.10.27).
16: 10.23 Sums
10.23.8 𝒞 ν ( w ) w ν = 2 ν Γ ( ν ) k = 0 ( ν + k ) 𝒞 ν + k ( u ) u ν J ν + k ( v ) v ν C k ( ν ) ( cos α ) , ν 0 , 1 , , | v e ± i α | < | u | ,
where C k ( ν ) ( cos α ) is Gegenbauer’s polynomial (§18.3). …
10.23.9 e i v cos α = Γ ( ν ) ( 1 2 v ) ν k = 0 ( ν + k ) i k J ν + k ( v ) C k ( ν ) ( cos α ) , ν 0 , 1 , .
17: 18.28 Askey–Wilson Class
§18.28(v) Continuous q -Ultraspherical Polynomials
Specialization to continuous q -ultraspherical: …
From Continuous q -Ultraspherical to Ultraspherical
18.28.31 lim q 1 C n ( x ; q λ | q ) = C n ( λ ) ( x ) .
From Continuous q -Ultraspherical to Continuous q -Hermite
18: 18.15 Asymptotic Approximations
§18.15(ii) Ultraspherical
18.15.10 C n ( λ ) ( cos θ ) = 2 2 λ Γ ( λ + 1 2 ) π 1 2 Γ ( λ + 1 ) ( 2 λ ) n ( λ + 1 ) n ( m = 0 M 1 ( λ ) m ( 1 λ ) m m ! ( n + λ + 1 ) m cos θ n , m ( 2 sin θ ) m + λ + O ( 1 n M ) ) ,
Asymptotic expansions for C n ( λ ) ( cos θ ) can be obtained from the results given in §18.15(i) by setting α = β = λ 1 2 and referring to (18.7.1). … For asymptotic approximations of Jacobi, ultraspherical, and Laguerre polynomials in terms of Hermite polynomials, see López and Temme (1999a). These approximations apply when the parameters are large, namely α and β (subject to restrictions) in the case of Jacobi polynomials, λ in the case of ultraspherical polynomials, and | α | + | x | in the case of Laguerre polynomials. …
19: 14.3 Definitions and Hypergeometric Representations
In terms of the Gegenbauer function C α ( β ) ( x ) and the Jacobi function ϕ λ ( α , β ) ( t ) (§§15.9(iii), 15.9(ii)):
14.3.21 𝖯 ν μ ( x ) = 2 μ Γ ( 1 2 μ ) Γ ( ν + μ + 1 ) Γ ( ν μ + 1 ) Γ ( 1 μ ) ( 1 x 2 ) μ / 2 C ν + μ ( 1 2 μ ) ( x ) .
14.3.22 P ν μ ( x ) = 2 μ Γ ( 1 2 μ ) Γ ( ν + μ + 1 ) Γ ( ν μ + 1 ) Γ ( 1 μ ) ( x 2 1 ) μ / 2 C ν + μ ( 1 2 μ ) ( x ) .
20: 18.35 Pollaczek Polynomials
The type 2 polynomials reduce for a = b = 0 to ultraspherical polynomials, see (18.35.8). …
18.35.8 P n ( λ ) ( x ; 0 , 0 ) = C n ( λ ) ( x ) ,
For the ultraspherical polynomials C n ( λ ) ( x ) , the Meixner–Pollaczek polynomials P n ( λ ) ( x ; ϕ ) and the associated Meixner–Pollaczek polynomials 𝒫 n λ ( x ; ϕ , c ) see §§18.3, 18.19 and 18.30(v), respectively. …