About the Project

sums and integrals

AdvancedHelp

(0.001 seconds)

11—20 of 173 matching pages

11: 8.19 Generalized Exponential Integral
8.19.7 E n ( z ) = ( z ) n 1 ( n 1 ) ! E 1 ( z ) + e z ( n 1 ) ! k = 0 n 2 ( n k 2 ) ! ( z ) k , n = 2 , 3 , .
8.19.8 E n ( z ) = ( z ) n 1 ( n 1 ) ! ( ψ ( n ) ln z ) k = 0 k n 1 ( z ) k k ! ( 1 n + k ) ,
8.19.10 E p ( z ) = z p 1 Γ ( 1 p ) k = 0 ( z ) k k ! ( 1 p + k ) ,
8.19.11 E p ( z ) = Γ ( 1 p ) ( z p 1 e z k = 0 z k Γ ( 2 p + k ) ) ,
8.19.24 0 e a t E n ( t ) d t = ( 1 ) n 1 a n ( ln ( 1 + a ) + k = 1 n 1 ( 1 ) k a k k ) , n = 1 , 2 , , a > 1 ,
12: 4.10 Integrals
§4.10 Integrals
§4.10(i) Logarithms
For li ( x ) see §6.2(i).
§4.10(ii) Exponentials
Extensive compendia of indefinite and definite integrals of logarithms and exponentials include Apelblat (1983, pp. 16–47), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 107–116), Gröbner and Hofreiter (1950, pp. 52–90), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.3, 1.6, 2.3, 2.6).
13: 6.16 Mathematical Applications
6.16.2 S n ( x ) = k = 0 n 1 sin ( ( 2 k + 1 ) x ) 2 k + 1 = 1 2 0 x sin ( 2 n t ) sin t d t = 1 2 Si ( 2 n x ) + R n ( x ) ,
14: 8.21 Generalized Sine and Cosine Integrals
8.21.14 Si ( a , z ) = z a k = 0 ( 1 ) k z 2 k + 1 ( 2 k + a + 1 ) ( 2 k + 1 ) ! , a 1 , 3 , 5 , ,
8.21.15 Ci ( a , z ) = z a k = 0 ( 1 ) k z 2 k ( 2 k + a ) ( 2 k ) ! , a 0 , 2 , 4 , .
8.21.16 Si ( a , z ) = z a k = 0 ( 2 k + 3 2 ) ( 1 1 2 a ) k ( 1 2 + 1 2 a ) k + 1 𝗃 2 k + 1 ( z ) , a 1 , 3 , 5 , ,
8.21.17 Ci ( a , z ) = z a k = 0 ( 2 k + 1 2 ) ( 1 2 1 2 a ) k ( 1 2 a ) k + 1 𝗃 2 k ( z ) , a 0 , 2 , 4 , .
15: 19.19 Taylor and Related Series
19.19.2 R a ( 𝐛 ; 𝐳 ) = N = 0 ( a ) N ( c ) N T N ( 𝐛 , 𝟏 𝐳 ) , c = j = 1 n b j , | 1 z j | < 1 ,
19.19.3 R a ( 𝐛 ; 𝐳 ) = z n a N = 0 ( a ) N ( c ) N T N ( b 1 , , b n 1 ; 1 ( z 1 / z n ) , , 1 ( z n 1 / z n ) ) , c = j = 1 n b j , | 1 ( z j / z n ) | < 1 .
16: 19.16 Definitions
§19.16(i) Symmetric Integrals
All other elliptic cases are integrals of the second kind. …(Note that R C ( x , y ) is not an elliptic integral.) … Each of the four complete integrals (19.16.20)–(19.16.23) can be integrated to recover the incomplete integral: …
17: 6.10 Other Series Expansions
6.10.4 Si ( z ) = z n = 0 ( 𝗃 n ( 1 2 z ) ) 2 ,
6.10.5 Cin ( z ) = n = 1 a n ( 𝗃 n ( 1 2 z ) ) 2 ,
6.10.6 Ei ( x ) = γ + ln | x | + n = 0 ( 1 ) n ( x a n ) ( 𝗂 n ( 1 ) ( 1 2 x ) ) 2 , x 0 ,
6.10.8 Ein ( z ) = z e z / 2 ( 𝗂 0 ( 1 ) ( 1 2 z ) + n = 1 2 n + 1 n ( n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) ) .
18: 36.8 Convergent Series Expansions
Ψ K ( 𝐱 ) = 2 K + 2 n = 0 exp ( i π ( 2 n + 1 ) 2 ( K + 2 ) ) Γ ( 2 n + 1 K + 2 ) a 2 n ( 𝐱 ) , K even,
Ψ K ( 𝐱 ) = 2 K + 2 n = 0 i n cos ( π ( n ( K + 1 ) 1 ) 2 ( K + 2 ) ) Γ ( n + 1 K + 2 ) a n ( 𝐱 ) , K odd,
36.8.3 3 2 / 3 4 π 2 Ψ ( H ) ( 3 1 / 3 𝐱 ) = Ai ( x ) Ai ( y ) n = 0 ( 3 1 / 3 i z ) n c n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n c n ( x ) d n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n d n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 1 ( 3 1 / 3 i z ) n d n ( x ) d n ( y ) n ! ,
36.8.4 Ψ ( E ) ( 𝐱 ) = 2 π 2 ( 2 3 ) 2 / 3 n = 0 ( i ( 2 / 3 ) 2 / 3 z ) n n ! ( f n ( x + i y 12 1 / 3 , x i y 12 1 / 3 ) ) ,
19: 19.31 Probability Distributions
§19.31 Probability Distributions
R G ( x , y , z ) and R F ( x , y , z ) occur as the expectation values, relative to a normal probability distribution in 2 or 3 , of the square root or reciprocal square root of a quadratic form. …
19.31.1 𝐱 T 𝐀 𝐱 = r = 1 n s = 1 n a r , s x r x s ,
19.31.2 n ( 𝐱 T 𝐀 𝐱 ) μ exp ( 𝐱 T 𝐁 𝐱 ) d x 1 d x n = π n / 2 Γ ( μ + 1 2 n ) det 𝐁 Γ ( 1 2 n ) R μ ( 1 2 , , 1 2 ; λ 1 , , λ n ) , μ > 1 2 n .
§19.16(iii) shows that for n = 3 the incomplete cases of R F and R G occur when μ = 1 / 2 and μ = 1 / 2 , respectively, while their complete cases occur when n = 2 . …
20: 36.6 Scaling Relations
§36.6 Scaling Relations
Ψ ( U ) ( 𝐱 ; k ) = k β ( U ) Ψ ( U ) ( 𝐲 ( U ) ( k ) ) ,
Indices for k -Scaling of Magnitude of Ψ K or Ψ ( U ) (Singularity Index)
cuspoids:  γ K = m = 1 K γ m K = K ( K + 3 ) 2 ( K + 2 ) ,
umbilics:  γ ( U ) = m = 1 3 γ m ( U ) = 5 3 .