About the Project

strict shifted

AdvancedHelp

(0.001 seconds)

21—30 of 155 matching pages

21: 12.9 Asymptotic Expansions for Large Variable
12.9.1 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , | ph z | 3 4 π δ ( < 3 4 π ) ,
12.9.2 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , | ph z | 1 4 π δ ( < 1 4 π ) .
12.9.3 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s ± i 2 π Γ ( 1 2 + a ) e i π a e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 5 4 π δ ,
12.9.4 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s ± i Γ ( 1 2 a ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 3 4 π δ .
22: 13.13 Addition and Multiplication Theorems
13.13.2 ( x + y x ) 1 b n = 0 ( 1 b ) n ( y / x ) n n ! M ( a , b n , x ) , | y | < | x | ,
13.13.3 ( x x + y ) a n = 0 ( a ) n y n n ! ( x + y ) n M ( a + n , b , x ) , ( y / x ) > 1 2 ,
13.13.5 e y ( x x + y ) b a n = 0 ( b a ) n y n n ! ( x + y ) n M ( a n , b , x ) , ( ( y + x ) / x ) > 1 2 ,
23: 13.26 Addition and Multiplication Theorems
13.26.1 e 1 2 y ( x x + y ) μ 1 2 n = 0 ( 2 μ ) n n ! ( y x ) n M κ 1 2 n , μ 1 2 n ( x ) , | y | < | x | ,
13.26.2 e 1 2 y ( x + y x ) μ + 1 2 n = 0 ( 1 2 + μ κ ) n ( 1 + 2 μ ) n n ! ( y x ) n M κ 1 2 n , μ + 1 2 n ( x ) ,
13.26.3 e 1 2 y ( x + y x ) κ n = 0 ( 1 2 + μ κ ) n y n n ! ( x + y ) n M κ n , μ ( x ) , ( y / x ) > 1 2 ,
13.26.5 e 1 2 y ( x + y x ) μ + 1 2 n = 0 ( 1 2 + μ + κ ) n ( 1 + 2 μ ) n n ! ( y x ) n M κ + 1 2 n , μ + 1 2 n ( x ) ,
13.26.6 e 1 2 y ( x x + y ) κ n = 0 ( 1 2 + μ + κ ) n y n n ! ( x + y ) n M κ + n , μ ( x ) , ( ( y + x ) / x ) > 1 2 .
24: 15.15 Sums
15.15.1 𝐅 ( a , b c ; 1 z ) = ( 1 z 0 z ) a s = 0 ( a ) s s ! 𝐅 ( s , b c ; 1 z 0 ) ( 1 z z 0 ) s .
25: 16.13 Appell Functions
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.2 F 2 ( α ; β , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 ,
16.13.3 F 3 ( α , α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m ( α ) n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.4 F 4 ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m + n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 .
26: 17.12 Bailey Pairs
17.12.3 β n = j = 0 n α j ( q ; q ) n j ( a q ; q ) n + j .
17.12.4 n = 0 q n 2 a n β n = 1 ( a q ; q ) n = 0 q n 2 a n α n .
27: 17.13 Integrals
17.13.1 c d ( q x / c ; q ) ( q x / d ; q ) ( a x / c ; q ) ( b x / d ; q ) d q x = ( 1 q ) ( q ; q ) ( a b ; q ) c d ( c / d ; q ) ( d / c ; q ) ( a ; q ) ( b ; q ) ( c + d ) ( b c / d ; q ) ( a d / c ; q ) ,
17.13.2 c d ( q x / c ; q ) ( q x / d ; q ) ( x q α / c ; q ) ( x q β / d ; q ) d q x = Γ q ( α ) Γ q ( β ) Γ q ( α + β ) c d c + d ( c / d ; q ) ( d / c ; q ) ( q β c / d ; q ) ( q α d / c ; q ) .
17.13.3 0 t α 1 ( t q α + β ; q ) ( t ; q ) d t = Γ ( α ) Γ ( 1 α ) Γ q ( β ) Γ q ( 1 α ) Γ q ( α + β ) ,
17.13.4 0 t α 1 ( c t q α + β ; q ) ( c t ; q ) d q t = Γ q ( α ) Γ q ( β ) ( c q α ; q ) ( q 1 α / c ; q ) Γ q ( α + β ) ( c ; q ) ( q / c ; q ) .
28: 5.18 q -Gamma and q -Beta Functions
5.18.1 ( a ; q ) n = k = 0 n 1 ( 1 a q k ) , n = 0 , 1 , 2 , ,
5.18.2 n ! q = 1 ( 1 + q ) ( 1 + q + + q n 1 ) = ( q ; q ) n ( 1 q ) n .
5.18.3 ( a ; q ) = k = 0 ( 1 a q k ) .
5.18.4 Γ q ( z ) = ( q ; q ) ( 1 q ) 1 z / ( q z ; q ) ,
5.18.12 B q ( a , b ) = 0 1 t a 1 ( t q ; q ) ( t q b ; q ) d q t , 0 < q < 1 , a > 0 , b > 0 .
29: 17.14 Constant Term Identities
17.14.1 ( q ; q ) a 1 + a 2 + + a n ( q ; q ) a 1 ( q ; q ) a 2 ( q ; q ) a n =  coeff. of  x 1 0 x 2 0 x n 0  in  1 j < k n ( x j x k ; q ) a j ( q x k x j ; q ) a k .
17.14.2 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q 2 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q ; q ) = H ( q ) ( q ; q 2 ) ,
17.14.3 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q ) = G ( q ) ( q ; q 2 ) ,
17.14.4 n = 0 q n 2 ( q 2 ; q 2 ) n ( q ; q 2 ) n =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 2 ; q 4 ) = G ( q 4 ) ( q ; q 2 ) ,
17.14.5 n = 0 q n 2 + 2 n ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 2 z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q 2 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 4 z 2 ; q 4 ) = H ( q 4 ) ( q ; q 2 ) .
30: 19.19 Taylor and Related Series
19.19.1 T N ( 𝐛 , 𝐳 ) = ( b 1 ) m 1 ( b n ) m n m 1 ! m n ! z 1 m 1 z n m n ,
19.19.2 R a ( 𝐛 ; 𝐳 ) = N = 0 ( a ) N ( c ) N T N ( 𝐛 , 𝟏 𝐳 ) , c = j = 1 n b j , | 1 z j | < 1 ,
19.19.3 R a ( 𝐛 ; 𝐳 ) = z n a N = 0 ( a ) N ( c ) N T N ( b 1 , , b n 1 ; 1 ( z 1 / z n ) , , 1 ( z n 1 / z n ) ) , c = j = 1 n b j , | 1 ( z j / z n ) | < 1 .
19.19.5 T N ( 𝟏 𝟐 , 𝐳 ) = ( 1 ) M + N ( 1 2 ) M E 1 m 1 ( 𝐳 ) E n m n ( 𝐳 ) m 1 ! m n ! ,