About the Project

spherical%20triangles

AdvancedHelp

(0.001 seconds)

11—20 of 182 matching pages

11: 34.3 Basic Properties: 3 ⁒ j Symbol
β–ΊThen assuming the triangle conditions are satisfied … β–ΊAgain it is assumed that in (34.3.7) the triangle conditions are satisfied. … β–ΊIn the following three equations it is assumed that the triangle conditions are satisfied by each 3 ⁒ j symbol. … β–Ί
§34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
β–ΊFor the polynomials P l see §18.3, and for the function Y l , m see §14.30. …
12: 10.49 Explicit Formulas
β–Ί
§10.49(i) Unmodified Functions
β–Ί
§10.49(ii) Modified Functions
β–Ί
§10.49(iii) Rayleigh’s Formulas
β–Ί
§10.49(iv) Sums or Differences of Squares
β–Ί
( 𝗂 0 ( 1 ) ⁑ ( z ) ) 2 ( 𝗂 0 ( 2 ) ⁑ ( z ) ) 2 = z 2 ,
13: 10.53 Power Series
§10.53 Power Series
β–Ί
10.53.3 𝗂 n ( 1 ) ⁑ ( z ) = z n ⁒ k = 0 ( 1 2 ⁒ z 2 ) k k ! ⁒ ( 2 ⁒ n + 2 ⁒ k + 1 ) !! ,
β–Ί
10.53.4 𝗂 n ( 2 ) ⁑ ( z ) = ( 1 ) n z n + 1 ⁒ k = 0 n ( 2 ⁒ n 2 ⁒ k 1 ) !! ⁒ ( 1 2 ⁒ z 2 ) k k ! + 1 z n + 1 ⁒ k = n + 1 ( 1 2 ⁒ z 2 ) k k ! ⁒ ( 2 ⁒ k 2 ⁒ n 1 ) !! .
β–ΊFor 𝗁 n ( 1 ) ⁑ ( z ) and 𝗁 n ( 2 ) ⁑ ( z ) combine (10.47.10), (10.53.1), and (10.53.2). For 𝗄 n ⁑ ( z ) combine (10.47.11), (10.53.3), and (10.53.4).
14: 10.56 Generating Functions
§10.56 Generating Functions
β–Ί
10.56.1 cos ⁑ z 2 2 ⁒ z ⁒ t z = cos ⁑ z z + n = 1 t n n ! ⁒ 𝗃 n 1 ⁑ ( z ) ,
β–Ί
10.56.2 sin ⁑ z 2 2 ⁒ z ⁒ t z = sin ⁑ z z + n = 1 t n n ! ⁒ 𝗒 n 1 ⁑ ( z ) .
β–Ί
10.56.3 cosh ⁑ z 2 + 2 ⁒ i ⁒ z ⁒ t z = cosh ⁑ z z + n = 1 ( i ⁒ t ) n n ! ⁒ 𝗂 n 1 ( 1 ) ⁑ ( z ) ,
β–Ί
10.56.4 sinh ⁑ z 2 + 2 ⁒ i ⁒ z ⁒ t z = sinh ⁑ z z + n = 1 ( i ⁒ t ) n n ! ⁒ 𝗂 n 1 ( 2 ) ⁑ ( z ) ,
15: 10.60 Sums
§10.60 Sums
β–Ί
§10.60(i) Addition Theorems
β–Ί
§10.60(ii) Duplication Formulas
β–ΊFor further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000). β–Ί
§10.60(iv) Compendia
16: 10.51 Recurrence Relations and Derivatives
β–ΊLet f n ⁑ ( z ) denote any of 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗁 n ( 1 ) ⁑ ( z ) , or 𝗁 n ( 2 ) ⁑ ( z ) . … β–Ί
n ⁒ f n 1 ⁑ ( z ) ( n + 1 ) ⁒ f n + 1 ⁑ ( z ) = ( 2 ⁒ n + 1 ) ⁒ f n ⁑ ( z ) , n = 1 , 2 , ,
β–Ί
f n ⁑ ( z ) = f n + 1 ⁑ ( z ) + ( n / z ) ⁒ f n ⁑ ( z ) , n = 0 , 1 , .
β–ΊLet g n ⁑ ( z ) denote 𝗂 n ( 1 ) ⁑ ( z ) , 𝗂 n ( 2 ) ⁑ ( z ) , or ( 1 ) n 𝗄 n ⁑ ( z ) . Then …
17: 10.57 Uniform Asymptotic Expansions for Large Order
§10.57 Uniform Asymptotic Expansions for Large Order
β–ΊAsymptotic expansions for 𝗃 n ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗒 n ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗁 n ( 1 ) ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗁 n ( 2 ) ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗂 n ( 1 ) ⁑ ( ( n + 1 2 ) ⁒ z ) , and 𝗄 n ⁑ ( ( n + 1 2 ) ⁒ z ) as n that are uniform with respect to z can be obtained from the results given in §§10.20 and 10.41 by use of the definitions (10.47.3)–(10.47.7) and (10.47.9). Subsequently, for 𝗂 n ( 2 ) ⁑ ( ( n + 1 2 ) ⁒ z ) the connection formula (10.47.11) is available. β–ΊFor the corresponding expansion for 𝗃 n ⁑ ( ( n + 1 2 ) ⁒ z ) use β–Ί
10.57.1 𝗃 n ⁑ ( ( n + 1 2 ) ⁒ z ) = Ο€ 1 2 ( ( 2 ⁒ n + 1 ) ⁒ z ) 1 2 ⁒ J n + 1 2 ⁑ ( ( n + 1 2 ) ⁒ z ) Ο€ 1 2 ( ( 2 ⁒ n + 1 ) ⁒ z ) 3 2 ⁒ J n + 1 2 ⁑ ( ( n + 1 2 ) ⁒ z ) .
18: 10.58 Zeros
§10.58 Zeros
β–ΊFor n 0 the m th positive zeros of 𝗃 n ⁑ ( x ) , 𝗃 n ⁑ ( x ) , 𝗒 n ⁑ ( x ) , and 𝗒 n ⁑ ( x ) are denoted by a n , m , a n , m , b n , m , and b n , m , respectively, except that for n = 0 we count x = 0 as the first zero of 𝗃 0 ⁑ ( x ) . … β–Ί
𝗃 n ⁑ ( a n , m ) = Ο€ 2 ⁒ j n + 1 2 , m ⁒ J n + 1 2 ⁑ ( j n + 1 2 , m ) ,
β–Ί
𝗒 n ⁑ ( b n , m ) = Ο€ 2 ⁒ y n + 1 2 , m ⁒ Y n + 1 2 ⁑ ( y n + 1 2 , m ) .
19: 10.1 Special Notation
β–ΊThe main functions treated in this chapter are the Bessel functions J Ξ½ ⁑ ( z ) , Y Ξ½ ⁑ ( z ) ; Hankel functions H Ξ½ ( 1 ) ⁑ ( z ) , H Ξ½ ( 2 ) ⁑ ( z ) ; modified Bessel functions I Ξ½ ⁑ ( z ) , K Ξ½ ⁑ ( z ) ; spherical Bessel functions 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗁 n ( 1 ) ⁑ ( z ) , 𝗁 n ( 2 ) ⁑ ( z ) ; modified spherical Bessel functions 𝗂 n ( 1 ) ⁑ ( z ) , 𝗂 n ( 2 ) ⁑ ( z ) , 𝗄 n ⁑ ( z ) ; Kelvin functions ber Ξ½ ⁑ ( x ) , bei Ξ½ ⁑ ( x ) , ker Ξ½ ⁑ ( x ) , kei Ξ½ ⁑ ( x ) . For the spherical Bessel functions and modified spherical Bessel functions the order n is a nonnegative integer. … β–ΊAbramowitz and Stegun (1964): j n ⁑ ( z ) , y n ⁑ ( z ) , h n ( 1 ) ⁑ ( z ) , h n ( 2 ) ⁑ ( z ) , for 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗁 n ( 1 ) ⁑ ( z ) , 𝗁 n ( 2 ) ⁑ ( z ) , respectively, when n 0 . … β–ΊFor older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
20: 10.54 Integral Representations
§10.54 Integral Representations
β–Ί
10.54.2 𝗃 n ⁑ ( z ) = ( i ) n 2 ⁒ 0 Ο€ e i ⁒ z ⁒ cos ⁑ ΞΈ ⁒ P n ⁑ ( cos ⁑ ΞΈ ) ⁒ sin ⁑ ΞΈ ⁒ d ΞΈ .
β–Ί
10.54.3 𝗄 n ⁑ ( z ) = Ο€ 2 ⁒ 1 e z ⁒ t ⁒ P n ⁑ ( t ) ⁒ d t , | ph ⁑ z | < 1 2 ⁒ Ο€ .
β–Ί
𝗁 n ( 1 ) ⁑ ( z ) = ( i ) n + 1 Ο€ ⁒ i ⁒ ( 1 + ) e i ⁒ z ⁒ t ⁒ Q n ⁑ ( t ) ⁒ d t ,
β–ΊFor the Legendre polynomial P n and the associated Legendre function Q n see §§18.3 and 14.21(i), with ΞΌ = 0 and Ξ½ = n . …