About the Project

spherical%20coordinates

AdvancedHelp

(0.001 seconds)

11—20 of 193 matching pages

11: 10.49 Explicit Formulas
§10.49(i) Unmodified Functions
§10.49(ii) Modified Functions
§10.49(iii) Rayleigh’s Formulas
§10.49(iv) Sums or Differences of Squares
( 𝗂 0 ( 1 ) ( z ) ) 2 ( 𝗂 0 ( 2 ) ( z ) ) 2 = z 2 ,
12: 10.53 Power Series
§10.53 Power Series
10.53.3 𝗂 n ( 1 ) ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.4 𝗂 n ( 2 ) ( z ) = ( 1 ) n z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
For 𝗁 n ( 1 ) ( z ) and 𝗁 n ( 2 ) ( z ) combine (10.47.10), (10.53.1), and (10.53.2). For 𝗄 n ( z ) combine (10.47.11), (10.53.3), and (10.53.4).
13: 18.39 Applications in the Physical Sciences
Now use spherical coordinates (1.5.16) with r instead of ρ , and assume the potential V to be radial. …By (1.5.17) the first term in (18.39.21), which is the quantum kinetic energy operator T e , can be written in spherical coordinates r , θ , ϕ as … …
a) Spherical Radial Coulomb Wave Functions Expressed in terms of Laguerre OP’s
c) Spherical Radial Coulomb Wave Functions
14: 1.5 Calculus of Two or More Variables
§1.5(ii) Coordinate Systems
Polar Coordinates
Cylindrical Coordinates
Spherical Coordinates
For applications and other coordinate systems see §§12.17, 14.19(i), 14.30(iv), 28.32, 29.18, 30.13, 30.14. …
15: 10.56 Generating Functions
§10.56 Generating Functions
10.56.1 cos z 2 2 z t z = cos z z + n = 1 t n n ! 𝗃 n 1 ( z ) ,
10.56.2 sin z 2 2 z t z = sin z z + n = 1 t n n ! 𝗒 n 1 ( z ) .
10.56.3 cosh z 2 + 2 i z t z = cosh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 1 ) ( z ) ,
10.56.4 sinh z 2 + 2 i z t z = sinh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 2 ) ( z ) ,
16: 10.60 Sums
§10.60 Sums
§10.60(i) Addition Theorems
§10.60(ii) Duplication Formulas
For further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000).
§10.60(iv) Compendia
17: 10.51 Recurrence Relations and Derivatives
Let f n ( z ) denote any of 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , or 𝗁 n ( 2 ) ( z ) . …
n f n 1 ( z ) ( n + 1 ) f n + 1 ( z ) = ( 2 n + 1 ) f n ( z ) , n = 1 , 2 , ,
f n ( z ) = f n + 1 ( z ) + ( n / z ) f n ( z ) , n = 0 , 1 , .
Let g n ( z ) denote 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , or ( 1 ) n 𝗄 n ( z ) . Then …
18: 10.57 Uniform Asymptotic Expansions for Large Order
§10.57 Uniform Asymptotic Expansions for Large Order
Asymptotic expansions for 𝗃 n ( ( n + 1 2 ) z ) , 𝗒 n ( ( n + 1 2 ) z ) , 𝗁 n ( 1 ) ( ( n + 1 2 ) z ) , 𝗁 n ( 2 ) ( ( n + 1 2 ) z ) , 𝗂 n ( 1 ) ( ( n + 1 2 ) z ) , and 𝗄 n ( ( n + 1 2 ) z ) as n that are uniform with respect to z can be obtained from the results given in §§10.20 and 10.41 by use of the definitions (10.47.3)–(10.47.7) and (10.47.9). Subsequently, for 𝗂 n ( 2 ) ( ( n + 1 2 ) z ) the connection formula (10.47.11) is available. For the corresponding expansion for 𝗃 n ( ( n + 1 2 ) z ) use
10.57.1 𝗃 n ( ( n + 1 2 ) z ) = π 1 2 ( ( 2 n + 1 ) z ) 1 2 J n + 1 2 ( ( n + 1 2 ) z ) π 1 2 ( ( 2 n + 1 ) z ) 3 2 J n + 1 2 ( ( n + 1 2 ) z ) .
19: 10.58 Zeros
§10.58 Zeros
For n 0 the m th positive zeros of 𝗃 n ( x ) , 𝗃 n ( x ) , 𝗒 n ( x ) , and 𝗒 n ( x ) are denoted by a n , m , a n , m , b n , m , and b n , m , respectively, except that for n = 0 we count x = 0 as the first zero of 𝗃 0 ( x ) . …
𝗃 n ( a n , m ) = π 2 j n + 1 2 , m J n + 1 2 ( j n + 1 2 , m ) ,
𝗒 n ( b n , m ) = π 2 y n + 1 2 , m Y n + 1 2 ( y n + 1 2 , m ) .
20: 10.1 Special Notation
The main functions treated in this chapter are the Bessel functions J ν ( z ) , Y ν ( z ) ; Hankel functions H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) ; modified Bessel functions I ν ( z ) , K ν ( z ) ; spherical Bessel functions 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) ; modified spherical Bessel functions 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , 𝗄 n ( z ) ; Kelvin functions ber ν ( x ) , bei ν ( x ) , ker ν ( x ) , kei ν ( x ) . For the spherical Bessel functions and modified spherical Bessel functions the order n is a nonnegative integer. … Abramowitz and Stegun (1964): j n ( z ) , y n ( z ) , h n ( 1 ) ( z ) , h n ( 2 ) ( z ) , for 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) , respectively, when n 0 . … For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).