About the Project

small k,k′

AdvancedHelp

(0.008 seconds)

31—40 of 70 matching pages

31: 19.36 Methods of Computation
β–ΊWhen the values of complete integrals are known, addition theorems with ψ = Ο€ / 2 19.11(ii)) ease the computation of functions such as F ⁑ ( Ο• , k ) when 1 2 ⁒ Ο€ Ο• is small and positive. …
32: 18.28 Askey–Wilson Class
β–Ί
18.28.20 y = 0 N R n ⁑ ( q y + Ξ³ ⁒ Ξ΄ ⁒ q y + 1 ) ⁒ R m ⁑ ( q y + Ξ³ ⁒ Ξ΄ ⁒ q y + 1 ) ⁒ Ο‰ y = h n ⁒ Ξ΄ n , m , n , m = 0 , 1 , , N ,
33: 2.5 Mellin Transform Methods
β–Ί
§2.5(iii) Laplace Transforms with Small Parameters
β–Ίwhere l ( 2 ) is an arbitrary integer and Ξ΄ is an arbitrary small positive constant. … … β–ΊTo verify (2.5.48) we may use … β–ΊFor examples in which the integral defining the Mellin transform β„³ ⁑ h ⁑ ( z ) does not exist for any value of z , see Wong (1989, Chapter 3), Bleistein and Handelsman (1975, Chapter 4), and Handelsman and Lew (1970).
34: 10.69 Uniform Asymptotic Expansions for Large Order
β–ΊLet U k ⁑ ( p ) and V k ⁑ ( p ) be the polynomials defined in §10.41(ii), and … β–Ί
10.69.3 ker Ξ½ ⁑ ( Ξ½ ⁒ x ) + i ⁒ kei Ξ½ ⁑ ( Ξ½ ⁒ x ) e Ξ½ ⁒ ΞΎ ⁒ ( Ο€ 2 ⁒ Ξ½ ⁒ ΞΎ ) 1 / 2 ⁒ ( x ⁒ e 3 ⁒ Ο€ ⁒ i / 4 1 + ΞΎ ) Ξ½ ⁒ k = 0 ( 1 ) k ⁒ U k ⁑ ( ΞΎ 1 ) Ξ½ k ,
β–Ί
10.69.5 ker Ξ½ ⁑ ( Ξ½ ⁒ x ) + i ⁒ kei Ξ½ ⁑ ( Ξ½ ⁒ x ) e Ξ½ ⁒ ΞΎ x ⁒ ( Ο€ ⁒ ΞΎ 2 ⁒ Ξ½ ) 1 / 2 ⁒ ( x ⁒ e 3 ⁒ Ο€ ⁒ i / 4 1 + ΞΎ ) Ξ½ ⁒ k = 0 ( 1 ) k ⁒ V k ⁑ ( ΞΎ 1 ) Ξ½ k ,
β–ΊAccuracy in (10.69.2) and (10.69.4) can be increased by including exponentially-small contributions as in (10.67.3), (10.67.4), (10.67.7), and (10.67.8) with x replaced by Ξ½ ⁒ x .
35: 10.1 Special Notation
β–Ί β–Ίβ–Ίβ–Ίβ–Ί
m , n integers. In §§10.4710.71 n is nonnegative.
k nonnegative integer (except in §10.73).
Ξ΄ arbitrary small positive constant.
β–ΊThe main functions treated in this chapter are the Bessel functions J Ξ½ ⁑ ( z ) , Y Ξ½ ⁑ ( z ) ; Hankel functions H Ξ½ ( 1 ) ⁑ ( z ) , H Ξ½ ( 2 ) ⁑ ( z ) ; modified Bessel functions I Ξ½ ⁑ ( z ) , K Ξ½ ⁑ ( z ) ; spherical Bessel functions 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗁 n ( 1 ) ⁑ ( z ) , 𝗁 n ( 2 ) ⁑ ( z ) ; modified spherical Bessel functions 𝗂 n ( 1 ) ⁑ ( z ) , 𝗂 n ( 2 ) ⁑ ( z ) , 𝗄 n ⁑ ( z ) ; Kelvin functions ber Ξ½ ⁑ ( x ) , bei Ξ½ ⁑ ( x ) , ker Ξ½ ⁑ ( x ) , kei Ξ½ ⁑ ( x ) . … β–ΊJeffreys and Jeffreys (1956): Hs Ξ½ ⁑ ( z ) for H Ξ½ ( 1 ) ⁑ ( z ) , Hi Ξ½ ⁑ ( z ) for H Ξ½ ( 2 ) ⁑ ( z ) , Kh Ξ½ ⁑ ( z ) for ( 2 / Ο€ ) ⁒ K Ξ½ ⁑ ( z ) . β–ΊWhittaker and Watson (1927): K Ξ½ ⁑ ( z ) for cos ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ K Ξ½ ⁑ ( z ) . …
36: 10.67 Asymptotic Expansions for Large Argument
β–ΊDefine a k ⁑ ( Ξ½ ) and b k ⁑ ( Ξ½ ) as in §§10.17(i) and 10.17(ii). … β–Ί
10.67.1 ker Ξ½ ⁑ x e x / 2 ⁒ ( Ο€ 2 ⁒ x ) 1 2 ⁒ k = 0 a k ⁑ ( Ξ½ ) x k ⁒ cos ⁑ ( x 2 + ( Ξ½ 2 + k 4 + 1 8 ) ⁒ Ο€ ) ,
β–Ί
10.67.2 kei Ξ½ ⁑ x e x / 2 ⁒ ( Ο€ 2 ⁒ x ) 1 2 ⁒ k = 0 a k ⁑ ( Ξ½ ) x k ⁒ sin ⁑ ( x 2 + ( Ξ½ 2 + k 4 + 1 8 ) ⁒ Ο€ ) .
β–ΊThe contributions of the terms in ker Ξ½ ⁑ x , kei Ξ½ ⁑ x , ker Ξ½ ⁑ x , and kei Ξ½ ⁑ x on the right-hand sides of (10.67.3), (10.67.4), (10.67.7), and (10.67.8) are exponentially small compared with the other terms, and hence can be neglected in the sense of Poincaré asymptotic expansions (§2.1(iii)). … …
37: 16.1 Special Notation
β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ίβ–Ί
p , q nonnegative integers.
k , n nonnegative integers, unless
Ξ΄ arbitrary small positive constant.
( 𝐚 ) k ( a 1 ) k ⁒ ( a 2 ) k ⁒ β‹― ⁒ ( a p ) k .
( 𝐛 ) k ( b 1 ) k ⁒ ( b 2 ) k ⁒ β‹― ⁒ ( b q ) k .
38: 8.18 Asymptotic Expansions of I x ⁑ ( a , b )
β–ΊThe functions F k are defined by …The coefficients d k are defined by the generating function … β–ΊA recurrence relation for the d k can be found in Nemes and Olde Daalhuis (2016). … β–Ίuniformly for x ( 0 , 1 ) and a / ( a + b ) , b / ( a + b ) [ Ξ΄ , 1 Ξ΄ ] , where Ξ΄ again denotes an arbitrary small positive constant. … β–ΊFor this result, and for higher coefficients c k ⁑ ( Ξ· ) see Temme (1996b, §11.3.3.2). …
39: 5.1 Special Notation
β–Ί β–Ίβ–Ίβ–Ίβ–Ί
j , m , n nonnegative integers.
k nonnegative integer, except in §5.20.
Ξ΄ arbitrary small positive constant.
40: 18.1 Notation
β–Ί β–Ίβ–Ίβ–Ίβ–Ί
x , y , t real variables.
k , l , β„“ , nonnegative integers.
Ξ΄ arbitrary small positive constant.
β–Ί
( z 1 , , z k ; q ) n = ( z 1 ; q ) n ⁒ β‹― ⁒ ( z k ; q ) n .
β–Ί
( z 1 , , z k ; q ) = ( z 1 ; q ) ⁒ β‹― ⁒ ( z k ; q ) .
β–Ί
  • Krawtchouk: K n ⁑ ( x ; p , N ) .