About the Project

small%20k%2Ck%E2%80%B2

AdvancedHelp

(0.005 seconds)

21—30 of 832 matching pages

21: 16.1 Special Notation
p , q nonnegative integers.
δ arbitrary small positive constant.
( 𝐚 ) k ( a 1 ) k ( a 2 ) k ( a p ) k .
( 𝐛 ) k ( b 1 ) k ( b 2 ) k ( b q ) k .
The main functions treated in this chapter are the generalized hypergeometric function F q p ( a 1 , , a p b 1 , , b q ; z ) , the Appell (two-variable hypergeometric) functions F 1 ( α ; β , β ; γ ; x , y ) , F 2 ( α ; β , β ; γ , γ ; x , y ) , F 3 ( α , α ; β , β ; γ ; x , y ) , F 4 ( α , β ; γ , γ ; x , y ) , and the Meijer G -function G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) . Alternative notations are F q p ( 𝐚 𝐛 ; z ) , F q p ( a 1 , , a p ; b 1 , , b q ; z ) , and F q p ( 𝐚 ; 𝐛 ; z ) for the generalized hypergeometric function, F 1 ( α , β , β ; γ ; x , y ) , F 2 ( α , β , β ; γ , γ ; x , y ) , F 3 ( α , α , β , β ; γ ; x , y ) , F 4 ( α , β ; γ , γ ; x , y ) , for the Appell functions, and G p , q m , n ( z ; 𝐚 ; 𝐛 ) for the Meijer G -function.
22: 22.16 Related Functions
Approximation for Small x
Approximations for Small k , k
With q as in (22.2.1) and ζ = π x / ( 2 K ) , … In Equations (22.16.24)–(22.16.26), 2 K < x < 2 K . … (Sometimes in the literature Z ( x | k ) is denoted by Z ( am ( x , k ) , k 2 ) .) …
23: 10.69 Uniform Asymptotic Expansions for Large Order
Let U k ( p ) and V k ( p ) be the polynomials defined in §10.41(ii), and …
10.69.3 ker ν ( ν x ) + i kei ν ( ν x ) e ν ξ ( π 2 ν ξ ) 1 / 2 ( x e 3 π i / 4 1 + ξ ) ν k = 0 ( 1 ) k U k ( ξ 1 ) ν k ,
10.69.5 ker ν ( ν x ) + i kei ν ( ν x ) e ν ξ x ( π ξ 2 ν ) 1 / 2 ( x e 3 π i / 4 1 + ξ ) ν k = 0 ( 1 ) k V k ( ξ 1 ) ν k ,
Accuracy in (10.69.2) and (10.69.4) can be increased by including exponentially-small contributions as in (10.67.3), (10.67.4), (10.67.7), and (10.67.8) with x replaced by ν x .
24: 24.20 Tables
Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. In Wagstaff (2002) these results are extended to n = 60 ( 2 ) 152 and n = 40 ( 2 ) 88 , respectively, with further complete and partial factorizations listed up to n = 300 and n = 200 , respectively. …
25: 1.12 Continued Fractions
when p k 0 , k = 1 , 2 , 3 , . …when c k 0 , k = 1 , 2 , 3 , . … The even part of C exists iff b 2 k 0 , k = 1 , 2 , , and up to equivalence is given by …The odd part of C exists iff b 2 k + 1 0 , k = 0 , 1 , 2 , , and up to equivalence is given by … where δ is an arbitrary small positive constant. …
26: 12.9 Asymptotic Expansions for Large Variable
Throughout this subsection δ is an arbitrary small positive constant. …
12.9.1 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , | ph z | 3 4 π δ ( < 3 4 π ) ,
12.9.2 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , | ph z | 1 4 π δ ( < 1 4 π ) .
12.9.3 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s ± i 2 π Γ ( 1 2 + a ) e i π a e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 5 4 π δ ,
12.9.4 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s ± i Γ ( 1 2 a ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 3 4 π δ .
27: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • L. C. Biedenharn, R. L. Gluckstern, M. H. Hull, and G. Breit (1955) Coulomb functions for large charges and small velocities. Phys. Rev. (2) 97 (2), pp. 542–554.
  • J. M. Borwein and I. J. Zucker (1992) Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind. IMA J. Numer. Anal. 12 (4), pp. 519–526.
  • 28: 10.17 Asymptotic Expansions for Large Argument
    and let δ denote an arbitrary small positive constant. … Also, b 0 ( ν ) = 1 , b 1 ( ν ) = ( 4 ν 2 + 3 ) / 8 , and for k 2 , … Then the remainder associated with the sum k = 0 1 ( 1 ) k a 2 k ( ν ) z 2 k does not exceed the first neglected term in absolute value and has the same sign provided that max ( 1 2 ν 1 4 , 1 ) . Similarly for k = 0 1 ( 1 ) k a 2 k + 1 ( ν ) z 2 k 1 , provided that max ( 1 2 ν 3 4 , 1 ) . … If these expansions are terminated when k = 1 , then the remainder term is bounded in absolute value by the first neglected term, provided that max ( ν 1 2 , 1 ) . …
    29: Bibliography L
  • A. Laforgia and M. E. Muldoon (1983) Inequalities and approximations for zeros of Bessel functions of small order. SIAM J. Math. Anal. 14 (2), pp. 383–388.
  • T. M. Larsen, D. Erricolo, and P. L. E. Uslenghi (2009) New method to obtain small parameter power series expansions of Mathieu radial and angular functions. Math. Comp. 78 (265), pp. 255–274.
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • M. Lerch (1887) Note sur la fonction 𝔎 ( w , x , s ) = k = 0 e 2 k π i x ( w + k ) s . Acta Math. 11 (1-4), pp. 19–24 (French).
  • 30: 5.19 Mathematical Applications
    S = k = 0 a k ,
    a k = k ( 3 k + 2 ) ( 2 k + 1 ) ( k + 1 ) .
    5.19.2 a k = 2 k + 2 3 1 k + 1 2 1 k + 1 = ( 1 k + 1 1 k + 1 2 ) 2 ( 1 k + 1 1 k + 2 3 ) .
    By translating the contour parallel to itself and summing the residues of the integrand, asymptotic expansions of f ( z ) for large | z | , or small | z | , can be obtained complete with an integral representation of the error term. …
    S = 2 π 1 2 n r n 1 Γ ( 1 2 n ) = n r V .