About the Project

small%20k%2Ck%E2%80%B2

AdvancedHelp

(0.004 seconds)

11—20 of 832 matching pages

11: 35.10 Methods of Computation
ā–ŗFor small values of ā€– š“ ā€– the zonal polynomial expansion given by (35.8.1) can be summed numerically. … ā–ŗSee Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on šŽ ā” ( m ) applied to a generalization of the integral (35.5.8). …
12: 28.35 Tables
ā–ŗ
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ā¢ ( 1 ) ā¢ 6 , q = 0 ā¢ ( 1 ) ā¢ 10 ā¢ ( 2 ) ā¢ 20 ā¢ ( 4 ) ā¢ 40 ; 7D. Also ce n ā” ( x , q ) , se n ā” ( x , q ) for q = 0 ā¢ ( 1 ) ā¢ 10 , x = 1 ā¢ ( 1 ) ā¢ 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = š‘š‘’ n 2 ā¢ q , b n = š‘š‘œ n 2 ā¢ q .

  • ā–ŗ
  • Kirkpatrick (1960) contains tables of the modified functions Ce n ā” ( x , q ) , Se n + 1 ā” ( x , q ) for n = 0 ā¢ ( 1 ) ā¢ 5 , q = 1 ā¢ ( 1 ) ā¢ 20 , x = 0.1 ā¢ ( .1 ) ā¢ 1 ; 4D or 5D.

  • ā–ŗ
  • National Bureau of Standards (1967) includes the eigenvalues a n ā” ( q ) , b n ā” ( q ) for n = 0 ā¢ ( 1 ) ā¢ 3 with q = 0 ā¢ ( .2 ) ā¢ 20 ā¢ ( .5 ) ā¢ 37 ā¢ ( 1 ) ā¢ 100 , and n = 4 ā¢ ( 1 ) ā¢ 15 with q = 0 ā¢ ( 2 ) ā¢ 100 ; Fourier coefficients for ce n ā” ( x , q ) and se n ā” ( x , q ) for n = 0 ā¢ ( 1 ) ā¢ 15 , n = 1 ā¢ ( 1 ) ā¢ 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ā” ( q ) , f e , n ā” ( q ) for n = 0 ā¢ ( 1 ) ā¢ 15 with q = 0 ā¢ ( .5 ā¢  to  ā¢ 10 ) ā¢ 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • ā–ŗ
  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ā” ( q ) , b n + 1 ā” ( q ) for n = 0 ā¢ ( 1 ) ā¢ 4 , q = 0 ā¢ ( 1 ) ā¢ 50 ; n = 0 ā¢ ( 1 ) ā¢ 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ā¢ ( 50 ) ā¢ 200 . Fourier coefficients for ce n ā” ( x , 10 ) , se n + 1 ā” ( x , 10 ) , n = 0 ā¢ ( 1 ) ā¢ 7 . Mathieu functions ce n ā” ( x , 10 ) , se n + 1 ā” ( x , 10 ) , and their first x -derivatives for n = 0 ā¢ ( 1 ) ā¢ 4 , x = 0 ā¢ ( 5 āˆ˜ ) ā¢ 90 āˆ˜ . Modified Mathieu functions Mc n ( j ) ā” ( x , 10 ) , Ms n + 1 ( j ) ā” ( x , 10 ) , and their first x -derivatives for n = 0 ā¢ ( 1 ) ā¢ 4 , j = 1 , 2 , x = 0 ā¢ ( .2 ) ā¢ 4 . Precision is mostly 9S.

  • ā–ŗ
  • Ince (1932) includes the first zero for ce n , se n for n = 2 ā¢ ( 1 ) ā¢ 5 or 6 , q = 0 ā¢ ( 1 ) ā¢ 10 ā¢ ( 2 ) ā¢ 40 ; 4D. This reference also gives zeros of the first derivatives, together with expansions for small q .

  • 13: Bibliography P
    ā–ŗ
  • R. B. Paris (2013) Exponentially small expansions of the confluent hypergeometric functions. Appl. Math. Sci. (Ruse) 7 (133-136), pp. 6601–6609.
  • ā–ŗ
  • J. B. Parkinson (1969) Optical properties of layer antiferromagnets with K 2 ā¢ NiF 4 structure. J. Phys. C: Solid State Physics 2 (11), pp. 2012–2021.
  • ā–ŗ
  • R. Parnes (1972) Complex zeros of the modified Bessel function K n ā¢ ( Z ) . Math. Comp. 26 (120), pp. 949–953.
  • ā–ŗ
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • ā–ŗ
  • R. Piessens (1984b) The computation of Bessel functions on a small computer. Comput. Math. Appl. 10 (2), pp. 161–166.
  • 14: 19.36 Methods of Computation
    ā–ŗWhen the differences are moderately small, the iteration is stopped, the elementary symmetric functions of certain differences are calculated, and a polynomial consisting of a fixed number of terms of the sum in (19.19.7) is evaluated. … ā–ŗLee (1990) compares the use of theta functions for computation of K ā” ( k ) , E ā” ( k ) , and K ā” ( k ) E ā” ( k ) , 0 k 2 1 , with four other methods. …For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). … ā–ŗWhen the values of complete integrals are known, addition theorems with Ļˆ = Ļ€ / 2 19.11(ii)) ease the computation of functions such as F ā” ( Ļ• , k ) when 1 2 ā¢ Ļ€ Ļ• is small and positive. Similarly, §19.26(ii) eases the computation of functions such as R F ā” ( x , y , z ) when x ( > 0 ) is small compared with min ā” ( y , z ) . …
    15: 11.13 Methods of Computation
    ā–ŗFor numerical purposes the most convenient of the representations given in §11.5, at least for real variables, include the integrals (11.5.2)–(11.5.5) for šŠ Ī½ ā” ( z ) and šŒ Ī½ ā” ( z ) . …Other integrals that appear in §11.5(i) have highly oscillatory integrands unless z is small. … ā–ŗThen from the limiting forms for small argument (§§11.2(i), 10.7(i), 10.30(i)), limiting forms for large argument (§§11.6(i), 10.7(ii), 10.30(ii)), and the connection formulas (11.2.5) and (11.2.6), it is seen that š‡ Ī½ ā” ( x ) and š‹ Ī½ ā” ( x ) can be computed in a stable manner by integrating forwards, that is, from the origin toward infinity. The solution šŠ Ī½ ā” ( x ) needs to be integrated backwards for small x , and either forwards or backwards for large x depending whether or not Ī½ exceeds 1 2 . …
    16: Bibliography I
    ā–ŗ
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ā¢ ( z ) i ā¢ J 1 ā¢ ( z ) and of Bessel functions J m ā¢ ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • ā–ŗ
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • ā–ŗ
  • K. Ireland and M. Rosen (1990) A Classical Introduction to Modern Number Theory. 2nd edition, Springer-Verlag, New York.
  • ā–ŗ
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • ā–ŗ
  • K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.
  • 17: 10.73 Physical Applications
    ā–ŗBessel functions first appear in the investigation of a physical problem in Daniel Bernoulli’s analysis of the small oscillations of a uniform heavy flexible chain. … ā–ŗBessel functions of the first kind, J n ā” ( x ) , arise naturally in applications having cylindrical symmetry in which the physics is described either by Laplace’s equation 2 V = 0 , or by the Helmholtz equation ( 2 + k 2 ) ā¢ Ļˆ = 0 . … ā–ŗThe Helmholtz equation, ( 2 + k 2 ) ā¢ Ļˆ = 0 , follows from the wave equation …on assuming a time dependence of the form e ± i ā¢ k ā¢ t . …See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). …
    18: 5.1 Special Notation
    ā–ŗ ā–ŗā–ŗā–ŗā–ŗ
    j , m , n nonnegative integers.
    k nonnegative integer, except in §5.20.
    Ī“ arbitrary small positive constant.
    19: 9.1 Special Notation
    ā–ŗ ā–ŗā–ŗā–ŗ
    k nonnegative integer, except in §9.9(iii).
    Ī“ arbitrary small positive constant.
    20: 28.1 Special Notation
    ā–ŗ ā–ŗā–ŗā–ŗā–ŗ
    m , n integers.
    Ī“ arbitrary small positive number.
    a , q , h real or complex parameters of Mathieu’s equation with q = h 2 .
    ā–ŗ
    Fey n ā” ( z , q ) = 1 2 ā¢ Ļ€ ā¢ g e , n ā” ( h ) ā¢ ce n ā” ( 0 , q ) ā¢ Mc n ( 2 ) ā” ( z , h ) ,
    ā–ŗ
    Abramowitz and Stegun (1964, Chapter 20)
    ā–ŗWith c = 2 ā¢ q , …