About the Project

single precision

AdvancedHelp

(0.001 seconds)

1—10 of 25 matching pages

1: 3.1 Arithmetics and Error Measures
IEEE Standard
In the case of the normalized binary interchange formats, the representation of data for binary32 (previously single precision) ( N = 32 , p = 24 , E min = 126 , E max = 127 ), binary64 (previously double precision) ( N = 64 , p = 53 , E min = 1022 , E max = 1023 ) and binary128 (previously quad precision) ( N = 128 , p = 113 , E min = 16382 , E max = 16383 ) are as in Figure 3.1.1. …
Figure 3.1.1: Floating-point arithmetic. Representation of data in the binary interchange formats for binary32, binary64 and binary128 (previously single, double and quad precision).
2: Bibliography
  • D. E. Amos (1983a) Algorithm 609. A portable FORTRAN subroutine for the Bickley functions Ki n ( x ) . ACM Trans. Math. Software 9 (4), pp. 480–493.
  • D. E. Amos (1980a) Algorithm 556: Exponential integrals. ACM Trans. Math. Software 6 (3), pp. 420–428.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • W. L. Anderson (1982) Algorithm 588. Fast Hankel transforms using related and lagged convolutions. ACM Trans. Math. Software 8 (4), pp. 369–370.
  • R. W. B. Ardill and K. J. M. Moriarty (1978) Spherical Bessel functions j n and y n of integer order and real argument. Comput. Phys. Comm. 14 (3-4), pp. 261–265.
  • 3: Bibliography T
  • T. Takemasa, T. Tamura, and H. H. Wolter (1979) Coulomb functions with complex angular momenta. Comput. Phys. Comm. 17 (4), pp. 351–355.
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • T. Tamura (1970) Angular momentum coupling coefficients. Comput. Phys. Comm. 1 (5), pp. 337–342.
  • 4: Bibliography D
  • A. R. DiDonato and A. H. Morris (1987) Algorithm 654: Fortran subroutines for computing the incomplete gamma function ratios and their inverses. ACM Trans. Math. Software 13 (3), pp. 318–319.
  • A. R. DiDonato and A. H. Morris (1992) Algorithm 708: Significant digit computation of the incomplete beta function ratios. ACM Trans. Math. Software 18 (3), pp. 360–373.
  • R. McD. Dodds and G. Wiechers (1972) Vector coupling coefficients as products of prime factors. Comput. Phys. Comm. 4 (2), pp. 268–274.
  • O. Dragoun and G. Heuser (1971) A program to calculate internal conversion coefficients for all atomic shells without screening. Comput. Phys. Comm. 2 (7), pp. 427–432.
  • 5: Bibliography N
  • NAG (commercial C and Fortran libraries) Numerical Algorithms Group, Ltd..
  • NMS (free collection of Fortran subroutines)
  • Numerical Recipes (commercial C, C++, Fortran 77, and Fortran 90 libraries)
  • 6: Bibliography L
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • D. A. Levine (1969) Algorithm 344: Student’s t-distribution [S14]. Comm. ACM 12 (1), pp. 37–38.
  • A. E. Lynas-Gray (1993) VOIGTL – A fast subroutine for Voigt function evaluation on vector processors. Comput. Phys. Comm. 75 (1-2), pp. 135–142.
  • 7: Bibliography S
  • M. J. Seaton (2002b) FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Comm. 146 (2), pp. 250–253.
  • M. J. Seaton (2002c) NUMER, a code for Numerov integrations of Coulomb functions. Comput. Phys. Comm. 146 (2), pp. 254–260.
  • J. Shapiro (1970) Arbitrary 3 n j symbols for SU ( 2 ) . Comput. Phys. Comm. 1 (3), pp. 207–215.
  • W. V. Snyder (1993) Algorithm 723: Fresnel integrals. ACM Trans. Math. Software 19 (4), pp. 452–456.
  • B. Sommer and J. G. Zabolitzky (1979) On numerical Bessel transformation. Comput. Phys. Comm. 16 (3), pp. 383–387.
  • 8: Bibliography E
  • U. Eckhardt (1980) Algorithm 549: Weierstrass’ elliptic functions. ACM Trans. Math. Software 6 (1), pp. 112–120.
  • 9: Bibliography K
  • D. K. Kahaner, C. Moler, and S. Nash (1989) Numerical Methods and Software. Prentice Hall, Englewood Cliffs, N.J..
  • K. S. Kölbig (1972c) Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument. Comput. Phys. Comm. 4, pp. 221–226.
  • K. S. Kölbig (1981) A Program for Computing the Conical Functions of the First Kind P 1 / 2 + i τ m ( x ) for m = 0 and m = 1 . Comput. Phys. Comm. 23 (1), pp. 51–61.
  • 10: Bibliography B
  • A. R. Barnett, D. H. Feng, J. W. Steed, and L. J. B. Goldfarb (1974) Coulomb wave functions for all real η and ρ . Comput. Phys. Comm. 8 (5), pp. 377–395.
  • R. F. Boisvert and B. V. Saunders (1992) Portable vectorized software for Bessel function evaluation. ACM Trans. Math. Software 18 (4), pp. 456–469.
  • W. J. Braithwaite (1973) Associated Legendre polynomials, ordinary and modified spherical harmonics. Comput. Phys. Comm. 5 (5), pp. 390–394.
  • P. G. Burke (1970) A program to calculate a general recoupling coefficient. Comput. Phys. Comm. 1 (4), pp. 241–250.