About the Project

series%20expansions

AdvancedHelp

(0.002 seconds)

21—28 of 28 matching pages

21: Bibliography C
  • B. C. Carlson (2008) Power series for inverse Jacobian elliptic functions. Math. Comp. 77 (263), pp. 1615–1621.
  • H. S. Carslaw (1930) Introduction to the Theory of Fourier’s Series and Integrals. 3rd edition, Macmillan, London.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 22: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • 23: 11.6 Asymptotic Expansions
    §11.6 Asymptotic Expansions
    For re-expansions of the remainder terms in (11.6.1) and (11.6.2), see Dingle (1973, p. 445). … More fully, the series (11.2.1) and (11.2.2) can be regarded as generalized asymptotic expansions2.1(v)). … Here …
    24: Bibliography D
  • G. Delic (1979b) Chebyshev series for the spherical Bessel function j l ( r ) . Comput. Phys. Comm. 18 (1), pp. 73–86.
  • P. Dienes (1931) The Taylor Series. Oxford University Press, Oxford.
  • R. B. Dingle (1973) Asymptotic Expansions: Their Derivation and Interpretation. Academic Press, London-New York.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 25: Bibliography L
  • T. M. Larsen, D. Erricolo, and P. L. E. Uslenghi (2009) New method to obtain small parameter power series expansions of Mathieu radial and angular functions. Math. Comp. 78 (265), pp. 255–274.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • J. L. López and E. Pérez Sinusía (2014) New series expansions for the confluent hypergeometric function M ( a , b , z ) . Appl. Math. Comput. 235, pp. 26–31.
  • J. L. López and N. M. Temme (2013) New series expansions of the Gauss hypergeometric function. Adv. Comput. Math. 39 (2), pp. 349–365.
  • Y. L. Luke (1959) Expansion of the confluent hypergeometric function in series of Bessel functions. Math. Tables Aids Comput. 13 (68), pp. 261–271.
  • 26: 2.11 Remainder Terms; Stokes Phenomenon
    Secondly, the asymptotic series represents an infinite class of functions, and the remainder depends on which member we have in mind. …
    §2.11(iii) Exponentially-Improved Expansions
    In this way we arrive at hyperasymptotic expansions. … The transformations in §3.9 for summing slowly convergent series can also be very effective when applied to divergent asymptotic series. … For example, using double precision d 20 is found to agree with (2.11.31) to 13D. …
    27: 25.11 Hurwitz Zeta Function
    The function ζ ( s , a ) was introduced in Hurwitz (1882) and defined by the series expansion
    §25.11(iv) Series Representations
    For other series expansions similar to (25.11.10) see Coffey (2008). …
    §25.11(x) Further Series Representations
    §25.11(xii) a -Asymptotic Behavior
    28: Bibliography G
  • F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.