About the Project

restricted%20integer%20partitions

AdvancedHelp

(0.003 seconds)

21—30 of 619 matching pages

21: 28.8 Asymptotic Expansions for Large q
28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
28.8.2 b m + 1 ( h 2 ) a m ( h 2 ) = 2 4 m + 5 m ! ( 2 π ) 1 / 2 h m + ( 3 / 2 ) e 4 h ( 1 6 m 2 + 14 m + 7 32 h + O ( 1 h 2 ) ) .
28.8.6 C ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 + 2 m + 1 8 h + m 4 + 2 m 3 + 263 m 2 + 262 m + 108 2048 h 2 + ) 1 / 2 ,
28.8.7 S ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 2 m + 1 8 h + m 4 + 2 m 3 121 m 2 122 m 84 2048 h 2 + ) 1 / 2 .
With additional restrictions on z , uniform asymptotic approximations for solutions of (28.2.1) and (28.20.1) are also obtained in terms of elementary functions by re-expansions of the Whittaker functions; compare §2.8(ii). …
22: 36 Integrals with Coalescing Saddles
23: Gergő Nemes
As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
24: Wolter Groenevelt
As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
25: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • M. N. Barber and B. W. Ninham (1970) Random and Restricted Walks: Theory and Applications. Gordon and Breach, New York.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • 26: 33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.

  • 27: 19.36 Methods of Computation
    19.36.2 1 3 14 E 2 + 1 6 E 3 + 9 88 E 2 2 3 22 E 4 9 52 E 2 E 3 + 3 26 E 5 1 16 E 2 3 + 3 40 E 3 2 + 3 20 E 2 E 4 + 45 272 E 2 2 E 3 9 68 ( E 3 E 4 + E 2 E 5 ) .
    Complex values of the variables are allowed, with some restrictions in the case of R J that are sufficient but not always necessary. …
    19.36.8 R F ( t n 2 , t n 2 + θ c n 2 , t n 2 + θ a n 2 )
    19.36.13 2 R G ( t 0 2 , t 0 2 + θ c 0 2 , t 0 2 + θ a 0 2 ) = ( t 0 2 + θ m = 0 2 m 1 c m 2 ) R C ( T 2 + θ M 2 , T 2 ) + h 0 + m = 1 2 m ( h m h m 1 ) .
    For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …
    28: William P. Reinhardt
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    29: 27.2 Functions
    Functions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers, …Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …They tend to thin out among the large integers, but this thinning out is not completely regular. … the sum of the k th powers of the positive integers m n that are relatively prime to n . … is the number of k -tuples of integers n whose greatest common divisor is relatively prime to n . …
    30: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003) Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Comm. 150 (1), pp. 1–20.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • G. E. Andrews (1979) Plane partitions. III. The weak Macdonald conjecture. Invent. Math. 53 (3), pp. 193–225.