About the Project

relation to generalized hypergeometric functions

AdvancedHelp

(0.026 seconds)

41—50 of 74 matching pages

41: Bibliography M
  • H. Majima, K. Matsumoto, and N. Takayama (2000) Quadratic relations for confluent hypergeometric functions. Tohoku Math. J. (2) 52 (4), pp. 489–513.
  • A. R. Miller and R. B. Paris (2011) Euler-type transformations for the generalized hypergeometric function F r + 1 r + 2 ( x ) . Z. Angew. Math. Phys. 62 (1), pp. 31–45.
  • A. R. Miller (1997) A class of generalized hypergeometric summations. J. Comput. Appl. Math. 87 (1), pp. 79–85.
  • A. R. Miller (2003) On a Kummer-type transformation for the generalized hypergeometric function F 2 2 . J. Comput. Appl. Math. 157 (2), pp. 507–509.
  • S. C. Milne (1985c) A new symmetry related to 𝑆𝑈 ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • 42: Bibliography B
  • G. Blanch and D. S. Clemm (1962) Tables Relating to the Radial Mathieu Functions. Vol. 1: Functions of the First Kind. U.S. Government Printing Office, Washington, D.C..
  • G. Blanch and D. S. Clemm (1965) Tables Relating to the Radial Mathieu Functions. Vol. 2: Functions of the Second Kind. U.S. Government Printing Office, Washington, D.C..
  • T. H. Boyer (1969) Concerning the zeros of some functions related to Bessel functions. J. Mathematical Phys. 10 (9), pp. 1729–1744.
  • W. Bühring (1988) An analytic continuation formula for the generalized hypergeometric function. SIAM J. Math. Anal. 19 (5), pp. 1249–1251.
  • W. Bühring (1992) Generalized hypergeometric functions at unit argument. Proc. Amer. Math. Soc. 114 (1), pp. 145–153.
  • 43: 15.4 Special Cases
    §15.4(i) Elementary Functions
    §15.4(ii) Argument Unity
    Chu–Vandermonde Identity
    §15.4(iii) Other Arguments
    44: Richard A. Askey
    Over his career his primary research areas were in Special Functions and Orthogonal Polynomials, but also included other topics from Classical Analysis and related areas. …One of his most influential papers Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials (with J. …Published in 1985 in the Memoirs of the American Mathematical Society, it also introduced the directed graph of hypergeometric orthogonal polynomials commonly known as the Askey scheme. …
  • 45: 14.21 Definitions and Basic Properties
    P ν ± μ ( z ) and 𝑸 ν μ ( z ) exist for all values of ν , μ , and z , except possibly z = ± 1 and , which are branch points (or poles) of the functions, in general. … …
    §14.21(iii) Properties
    Many of the properties stated in preceding sections extend immediately from the x -interval ( 1 , ) to the cut z -plane \ ( , 1 ] . This includes, for example, the Wronskian relations (14.2.7)–(14.2.11); hypergeometric representations (14.3.6)–(14.3.10) and (14.3.15)–(14.3.20); results for integer orders (14.6.3)–(14.6.5), (14.6.7), (14.6.8), (14.7.6), (14.7.7), and (14.7.11)–(14.7.16); behavior at singularities (14.8.7)–(14.8.16); connection formulas (14.9.11)–(14.9.16); recurrence relations (14.10.3)–(14.10.7). …
    46: 18.33 Polynomials Orthogonal on the Unit Circle
    For an alternative and more detailed approach to the recurrence relations, see §18.33(vi). …
    Szegő–Askey
    For the hypergeometric function F 1 2 see §§15.1 and 15.2(i). Askey (1982a) and Sri Ranga (2010) give more general results leading to what seem to be the right analogues of Jacobi polynomials on the unit circle. … Equivalent to the recurrence relations (18.33.23), (18.33.24) are the inverse Szegő recurrence relations
    47: Bibliography K
  • A. Khare, A. Lakshminarayan, and U. Sukhatme (2003) Cyclic identities for Jacobi elliptic and related functions. J. Math. Phys. 44 (4), pp. 1822–1841.
  • H. Ki and Y. Kim (2000) On the zeros of some generalized hypergeometric functions. J. Math. Anal. Appl. 243 (2), pp. 249–260.
  • U. J. Knottnerus (1960) Approximation Formulae for Generalized Hypergeometric Functions for Large Values of the Parameters. J. B. Wolters, Groningen.
  • T. H. Koornwinder (2015) Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators. SIGMA Symmetry Integrability Geom. Methods Appl. 11, pp. Paper 074, 22.
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.
  • 48: Bibliography G
  • F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
  • W. Gautschi (1959b) Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38 (1), pp. 77–81.
  • W. Gautschi (1984) Questions of Numerical Condition Related to Polynomials. In Studies in Numerical Analysis, G. H. Golub (Ed.), pp. 140–177.
  • W. Gautschi (2002b) Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions. J. Comput. Appl. Math. 139 (1), pp. 173–187.
  • W. Groenevelt (2007) Fourier transforms related to a root system of rank 1. Transform. Groups 12 (1), pp. 77–116.
  • 49: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • N. Virchenko and I. Fedotova (2001) Generalized Associated Legendre Functions and their Applications. World Scientific Publishing Co. Inc., Singapore.
  • H. Volkmer and J. J. Wood (2014) A note on the asymptotic expansion of generalized hypergeometric functions. Anal. Appl. (Singap.) 12 (1), pp. 107–115.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • H. Volkmer (2023) Asymptotic expansion of the generalized hypergeometric function F q p ( z ) as z for p < q . Anal. Appl. (Singap.) 21 (2), pp. 535–545.
  • 50: 33.14 Definitions and Basic Properties
    §33.14(ii) Regular Solution f ( ϵ , ; r )
    where M κ , μ ( z ) and M ( a , b , z ) are defined in §§13.14(i) and 13.2(i), and …
    §33.14(iii) Irregular Solution h ( ϵ , ; r )
    For nonzero values of ϵ and r the function h ( ϵ , ; r ) is defined by …
    §33.14(v) Wronskians