About the Project

relation%20to%20Lam%C3%A9%20equation

AdvancedHelp

(0.005 seconds)

11—20 of 926 matching pages

11: 29.2 Differential Equations
§29.2 Differential Equations
§29.2(i) Lamé’s Equation
§29.2(ii) Other Forms
For the Weierstrass function see §23.2(ii). …
12: 27.2 Functions
( ν ( 1 ) is defined to be 0.) Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …They tend to thin out among the large integers, but this thinning out is not completely regular. … the sum of the k th powers of the positive integers m n that are relatively prime to n . … is the number of k -tuples of integers n whose greatest common divisor is relatively prime to n . …
13: 26.5 Lattice Paths: Catalan Numbers
§26.5(i) Definitions
It counts the number of lattice paths from ( 0 , 0 ) to ( n , n ) that stay on or above the line y = x . …
§26.5(iii) Recurrence Relations
26.5.7 lim n C ( n + 1 ) C ( n ) = 4 .
14: 6.11 Relations to Other Functions
§6.11 Relations to Other Functions
Incomplete Gamma Function
Confluent Hypergeometric Function
6.11.2 E 1 ( z ) = e z U ( 1 , 1 , z ) ,
15: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
§26.4(i) Definitions
It is also the number of k -dimensional lattice paths from ( 0 , 0 , , 0 ) to ( n 1 , n 2 , , n k ) . For k = 0 , 1 , the multinomial coefficient is defined to be 1 . … (The empty set is considered to have one permutation consisting of no cycles.) …
§26.4(iii) Recurrence Relation
16: 6.16 Mathematical Applications
Hence, if x is fixed and n , then S n ( x ) 1 4 π , 0 , or 1 4 π according as 0 < x < π , x = 0 , or π < x < 0 ; compare (6.2.14). … Hence if x = π / ( 2 n ) and n , then the limiting value of S n ( x ) overshoots 1 4 π by approximately 18%. … If we assume Riemann’s hypothesis that all nonreal zeros of ζ ( s ) have real part of 1 2 25.10(i)), then …where π ( x ) is the number of primes less than or equal to x . …
See accompanying text
Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify
17: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Pearson (1965) tabulates the function I ( u , p ) ( = P ( p + 1 , u ) ) for p = 1 ( .05 ) 0 ( .1 ) 5 ( .2 ) 50 , u = 0 ( .1 ) u p to 7D, where I ( u , u p ) rounds off to 1 to 7D; also I ( u , p ) for p = 0.75 ( .01 ) 1 , u = 0 ( .1 ) 6 to 5D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 18: 25 Zeta and Related Functions
    Chapter 25 Zeta and Related Functions
    19: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • A. R. Its and A. A. Kapaev (1987) The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent. Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).
  • 20: Publications
    DLMF Related Publications
  • B. V. Saunders and Q. Wang (1999) Using Numerical Grid Generation to Facilitate 3D Visualization of Complicated Mathematical Functions, Technical Report NISTIR 6413 (November 1999), National Institute of Standards and Technology. PDF
  • B. V. Saunders and Q. Wang (2000) From 2D to 3D: Numerical Grid Generation and the Visualization of Complex Surfaces, Proceedings of the 7th International Conference on Numerical Grid Generation in Computational Field Simulations, Whistler, British Columbia, Canada, September 25-28, 2000. PDF
  • B. V. Saunders and Q. Wang (2006) From B-Spline Mesh Generation to Effective Visualizations for the NIST Digital Library of Mathematical Functions, in Curve and Surface Design, Proceedings of the Sixth International Conference on Curves and Surfaces, Avignon, France June 29–July 5, 2006, pp. 235–243. PDF
  • B. I. Schneider, B. R. Miller and B. V. Saunders (2018) NIST’s Digital Library of Mathematial Functions, Physics Today 71, 2, 48 (2018), pp. 48–53. PDF