About the Project
NIST

relation to error functions

AdvancedHelp

(0.015 seconds)

1—10 of 64 matching pages

1: 7.11 Relations to Other Functions
Incomplete Gamma Functions and Generalized Exponential Integral
Confluent Hypergeometric Functions
2: 7.1 Special Notation
3: 7.5 Interrelations
§7.5 Interrelations
4: 12.7 Relations to Other Functions
§12.7(ii) Error Functions, Dawson’s Integral, and Probability Function
5: 7.18 Repeated Integrals of the Complementary Error Function
Hermite Polynomials
Confluent Hypergeometric Functions
Parabolic Cylinder Functions
Probability Functions
6: 13.18 Relations to Other Functions
§13.18(ii) Incomplete Gamma Functions
7: 7.19 Voigt Functions
7.19.2 V ( x , t ) = 1 4 π t - y e - ( x - y ) 2 / ( 4 t ) 1 + y 2 d y .
8: 7.10 Derivatives
§7.10 Derivatives
9: 13.6 Relations to Other Functions
§13.6(ii) Incomplete Gamma Functions
10: 7.13 Zeros
In consequence of (7.5.5) and (7.5.10), zeros of ( z ) are related to zeros of erfc z . …