About the Project

regular%20solutions

AdvancedHelp

(0.002 seconds)

21—30 of 313 matching pages

21: 27.15 Chinese Remainder Theorem
The Chinese remainder theorem states that a system of congruences x a 1 ( mod m 1 ) , , x a k ( mod m k ) , always has a solution if the moduli are relatively prime in pairs; the solution is unique (mod m ), where m is the product of the moduli. … Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
22: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • B. I. Schneider, J. Segura, A. Gil, X. Guan, and K. Bartschat (2010) A new Fortran 90 program to compute regular and irregular associated Legendre functions. Comput. Phys. Comm. 181 (12), pp. 2091–2097.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • R. Spigler (1984) The linear differential equation whose solutions are the products of solutions of two given differential equations. J. Math. Anal. Appl. 98 (1), pp. 130–147.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • 23: 30.2 Differential Equations
    30.2.1 d d z ( ( 1 z 2 ) d w d z ) + ( λ + γ 2 ( 1 z 2 ) μ 2 1 z 2 ) w = 0 .
    This equation has regular singularities at z = ± 1 with exponents ± 1 2 μ and an irregular singularity of rank 1 at z = (if γ 0 ). …
    30.2.4 ( ζ 2 γ 2 ) d 2 w d ζ 2 + 2 ζ d w d ζ + ( ζ 2 λ γ 2 γ 2 μ 2 ζ 2 γ 2 ) w = 0 .
    24: 16.8 Differential Equations
    If z 0 is not an ordinary point but ( z z 0 ) n j f j ( z ) , j = 0 , 1 , , n 1 , are analytic at z = z 0 , then z 0 is a regular singularity. … Equation (16.8.4) has a regular singularity at z = 0 , and an irregular singularity at z = , whereas (16.8.5) has regular singularities at z = 0 , 1 , and . … When no b j is an integer, and no two b j differ by an integer, a fundamental set of solutions of (16.8.3) is given by … When p = q + 1 , and no two a j differ by an integer, another fundamental set of solutions of (16.8.3) is given by … Thus in the case p = q the regular singularities of the function on the left-hand side at α and coalesce into an irregular singularity at . …
    25: 33.5 Limiting Forms for Small ρ , Small | η | , or Large
    F ( η , ρ ) C ( η ) ρ + 1 ,
    F ( η , ρ ) ( + 1 ) C ( η ) ρ .
    F ( 0 , ρ ) = ρ 𝗃 ( ρ ) ,
    F 0 ( 0 , ρ ) = sin ρ ,
    F ( η , ρ ) C ( η ) ρ + 1 ,
    26: 20 Theta Functions
    Chapter 20 Theta Functions
    27: 33.10 Limiting Forms for Large ρ or Large | η |
    F ( η , ρ ) = sin ( θ ( η , ρ ) ) + o ( 1 ) ,
    F ( η , ρ ) ( 2 + 1 ) ! C ( η ) ( 2 η ) + 1 ( 2 η ρ ) 1 / 2 I 2 + 1 ( ( 8 η ρ ) 1 / 2 ) ,
    F 0 ( η , ρ ) e π η ( π ρ ) 1 / 2 I 1 ( ( 8 η ρ ) 1 / 2 ) ,
    F 0 ( η , ρ ) e π η ( 2 π η ) 1 / 2 I 0 ( ( 8 η ρ ) 1 / 2 ) ,
    F 0 ( η , ρ ) = ( π ρ ) 1 / 2 J 1 ( ( 8 η ρ ) 1 / 2 ) + o ( | η | 1 / 4 ) ,
    28: 18.39 Applications in the Physical Sciences
    The solutions of (18.39.8) are subject to boundary conditions at a and b . … The solutions (18.39.8) are called the stationary states as separation of variables in (18.39.9) yields solutions of form … Brief mention of non-unit normalized solutions in the case of mixed spectra appear, but as these solutions are not OP’s details appear elsewhere, as referenced. … Kuijlaars and Milson (2015, §1) refer to these, in this case complex zeros, as exceptional, as opposed to regular, zeros of the EOP’s, these latter belonging to the (real) orthogonality integration range. … See Yamani and Fishman (1975) for L 2 for expansions of both the regular and irregular spherical Bessel functions, which are the Pollaczeks with a = Z = 0 , and Coulomb functions for fixed l , Broad and Reinhardt (1976) for a many particle example, and the overview of Alhaidari et al. (2008). …
    29: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …They tend to thin out among the large integers, but this thinning out is not completely regular. …
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
    6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
    7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
    30: 33.16 Connection Formulas
    §33.16(i) F and G in Terms of f and h
    33.16.1 F ( η , ρ ) = ( 2 + 1 ) ! C ( η ) ( 2 η ) + 1 f ( 1 / η 2 , ; η ρ ) ,
    §33.16(ii) f and h in Terms of F and G when ϵ > 0
    §33.16(iv) s and c in Terms of F and G when ϵ > 0