About the Project

rational arithmetics

AdvancedHelp

(0.001 seconds)

1—10 of 11 matching pages

1: 3.1 Arithmetics and Error Measures
§3.1(iii) Rational Arithmetics
Computer algebra systems use exact rational arithmetic with rational numbers p / q , where p and q are multi-length integers. …
2: Bibliography M
  • D. W. Matula and P. Kornerup (1980) Foundations of Finite Precision Rational Arithmetic. In Fundamentals of Numerical Computation (Computer-oriented Numerical Analysis), G. Alefeld and R. D. Grigorieff (Eds.), Comput. Suppl., Vol. 2, Vienna, pp. 85–111.
  • 3: Annie A. M. Cuyt
    As a consequence her expertise spans a wide range of activities from pure abstract mathematics to computer arithmetic and different engineering applications. A lot of her research has been devoted to rational approximations, in one as well as in many variables, and sparse interpolation. …
    4: 24.10 Arithmetic Properties
    §24.10 Arithmetic Properties
    Here and elsewhere two rational numbers are congruent if the modulus divides the numerator of their difference. …
    5: Bibliography
  • H. Airault (1979) Rational solutions of Painlevé equations. Stud. Appl. Math. 61 (1), pp. 31–53.
  • W. A. Al-Salam and M. E. H. Ismail (1994) A q -beta integral on the unit circle and some biorthogonal rational functions. Proc. Amer. Math. Soc. 121 (2), pp. 553–561.
  • G. Almkvist and B. Berndt (1988) Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π , and the Ladies Diary. Amer. Math. Monthly 95 (7), pp. 585–608.
  • H. M. Antia (1993) Rational function approximations for Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 84, pp. 101–108.
  • M. A. Anuta, D. W. Lozier, and P. R. Turner (1996) The MasPar MP-1 as a computer arithmetic laboratory. J. Res. Nat. Inst. Stand. Technol. 101 (2), pp. 165–174.
  • 6: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • J.-P. Serre (1973) A Course in Arithmetic. Graduate Texts in Mathematics, Vol. 7, Springer-Verlag, New York.
  • I. Sh. Slavutskiĭ (1995) Staudt and arithmetical properties of Bernoulli numbers. Historia Sci. (2) 5 (1), pp. 69–74.
  • D. M. Smith (1998) Algorithm 786: Multiple-precision complex arithmetic and functions. ACM Trans. Math. Software 24 (4), pp. 359–367.
  • D. M. Smith (1991) Algorithm 693: A FORTRAN package for floating-point multiple-precision arithmetic. ACM Trans. Math. Software 17 (2), pp. 273–283.
  • 7: Bibliography H
  • S. P. Hastings and J. B. McLeod (1980) A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rational Mech. Anal. 73 (1), pp. 31–51.
  • B. Hayes (2009) The higher arithmetic. American Scientist 97, pp. 364–368.
  • C. J. Hill (1828) Über die Integration logarithmisch-rationaler Differentiale. J. Reine Angew. Math. 3, pp. 101–159.
  • 8: Bibliography Y
  • A. I. Yablonskiĭ (1959) On rational solutions of the second Painlevé equation. Vesti Akad. Navuk. BSSR Ser. Fiz. Tkh. Nauk. 3, pp. 30–35 (Russian).
  • J. M. Yohe (1979) Software for interval arithmetic: A reasonably portable package. ACM Trans. Math. Software 5 (1), pp. 50–63.
  • 9: Bibliography G
  • D. Goldberg (1991) What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys 23 (1), pp. 5–48.
  • D. Gómez-Ullate and R. Milson (2014) Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials. J. Phys. A 47 (1), pp. 015203, 26 pp..
  • 10: Bibliography C
  • P. A. Clarkson (2005) Special polynomials associated with rational solutions of the fifth Painlevé equation. J. Comput. Appl. Math. 178 (1-2), pp. 111–129.
  • C. W. Clenshaw, F. W. J. Olver, and P. R. Turner (1989) Level-Index Arithmetic: An Introductory Survey. In Numerical Analysis and Parallel Processing (Lancaster, 1987), P. R. Turner (Ed.), Lecture Notes in Math., Vol. 1397, pp. 95–168.
  • W. J. Cody (1969) Rational Chebyshev approximations for the error function. Math. Comp. 23 (107), pp. 631–637.
  • D. A. Cox (1984) The arithmetic-geometric mean of Gauss. Enseign. Math. (2) 30 (3-4), pp. 275–330.
  • D. A. Cox (1985) Gauss and the arithmetic-geometric mean. Notices Amer. Math. Soc. 32 (2), pp. 147–151.