About the Project

radial

AdvancedHelp

(0.001 seconds)

21—30 of 42 matching pages

21: 33.6 Power-Series Expansions in ρ
33.6.1 F ( η , ρ ) = C ( η ) k = + 1 A k ( η ) ρ k ,
33.6.2 F ( η , ρ ) = C ( η ) k = + 1 k A k ( η ) ρ k 1 ,
33.6.5 H ± ( η , ρ ) = e ± i θ ( η , ρ ) ( 2 + 1 ) ! Γ ( ± i η ) ( k = 0 ( a ) k ( 2 + 2 ) k k ! ( 2 i ρ ) a + k ( ln ( 2 i ρ ) + ψ ( a + k ) ψ ( 1 + k ) ψ ( 2 + 2 + k ) ) k = 1 2 + 1 ( 2 + 1 ) ! ( k 1 ) ! ( 2 + 1 k ) ! ( 1 a ) k ( 2 i ρ ) a k ) ,
22: 33.9 Expansions in Series of Bessel Functions
33.9.3 F ( η , ρ ) = C ( η ) ( 2 + 1 ) ! ( 2 η ) 2 + 1 ρ k = 2 + 1 b k t k / 2 I k ( 2 t ) , η > 0 ,
33.9.4 F ( η , ρ ) = C ( η ) ( 2 + 1 ) ! ( 2 | η | ) 2 + 1 ρ k = 2 + 1 b k t k / 2 J k ( 2 t ) , η < 0 .
33.9.6 G ( η , ρ ) ρ ( + 1 2 ) λ ( η ) C ( η ) k = 2 + 1 ( 1 ) k b k t k / 2 K k ( 2 t ) ,
23: 28.28 Integrals, Integral Representations, and Integral Equations
§28.28(i) Equations with Elementary Kernels
28.28.23 2 π 0 π 𝒞 2 + 2 ( j ) ( 2 h R ) sin ( ( 2 + 2 ) ϕ ) se 2 m + 2 ( t , h 2 ) d t = ( 1 ) + m B 2 + 2 2 m + 2 ( h 2 ) Ms 2 m + 2 ( j ) ( z , h ) .
§28.28(iv) Integrals of Products of Mathieu Functions of Integer Order
28.28.49 α ^ n , m ( c ) = 1 2 π 0 2 π cos t ce n ( t , h 2 ) ce m ( t , h 2 ) d t = ( 1 ) p + 1 2 i π ce n ( 0 , h 2 ) ce m ( 0 , h 2 ) h Dc 0 ( n , m , 0 ) .
§28.28(v) Compendia
24: 33.12 Asymptotic Expansions for Large η
When = 0 and η > 0 , the outer turning point is given by ρ tp ( η , 0 ) = 2 η ; compare (33.2.2). …
33.12.2 F 0 ( η , ρ ) G 0 ( η , ρ ) π 1 / 2 ( 2 η ) 1 / 6 { Ai ( x ) Bi ( x ) ( 1 + B 1 μ + B 2 μ 2 + ) + Ai ( x ) Bi ( x ) ( A 1 μ + A 2 μ 2 + ) } ,
33.12.3 F 0 ( η , ρ ) G 0 ( η , ρ ) π 1 / 2 ( 2 η ) 1 / 6 { Ai ( x ) Bi ( x ) ( B 1 + x A 1 μ + B 2 + x A 2 μ 2 + ) + Ai ( x ) Bi ( x ) ( B 1 + A 1 μ + B 2 + A 2 μ 2 + ) } ,
33.12.6 F 0 ( η , 2 η ) 3 1 / 2 G 0 ( η , 2 η ) Γ ( 1 3 ) ω 1 / 2 2 π ( 1 2 35 Γ ( 2 3 ) Γ ( 1 3 ) 1 ω 4 8 2025 1 ω 6 5792 46 06875 Γ ( 2 3 ) Γ ( 1 3 ) 1 ω 10 ) ,
33.12.7 F 0 ( η , 2 η ) 3 1 / 2 G 0 ( η , 2 η ) Γ ( 2 3 ) 2 π ω 1 / 2 ( ± 1 + 1 15 Γ ( 1 3 ) Γ ( 2 3 ) 1 ω 2 ± 2 14175 1 ω 6 + 1436 23 38875 Γ ( 1 3 ) Γ ( 2 3 ) 1 ω 8 ± ) ,
25: 28.1 Special Notation
Ce ν ( z , q ) , Se ν ( z , q ) , Fe n ( z , q ) , Ge n ( z , q ) ,
The functions Mc n ( j ) ( z , h ) and Ms n ( j ) ( z , h ) are also known as the radial Mathieu functions. …
f o , n ( h ) .
The radial functions Mc n ( j ) ( z , h ) and Ms n ( j ) ( z , h ) are denoted by Mc n ( j ) ( z , q ) and Ms n ( j ) ( z , q ) , respectively.
26: 33.11 Asymptotic Expansions for Large ρ
33.11.1 H ± ( η , ρ ) e ± i θ ( η , ρ ) k = 0 ( a ) k ( b ) k k ! ( ± 2 i ρ ) k ,
33.11.4 H ± ( η , ρ ) = e ± i θ ( f ( η , ρ ) ± i g ( η , ρ ) ) ,
27: Bibliography Y
  • H. A. Yamani and W. P. Reinhardt (1975) L -squared discretizations of the continuum: Radial kinetic energy and the Coulomb Hamiltonian. Phys. Rev. A 11 (4), pp. 1144–1156.
  • 28: 28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
    §28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
    28.24.2 ε s Mc 2 m ( j ) ( z , h ) = ( 1 ) m = 0 ( 1 ) A 2 2 m ( h 2 ) A 2 s 2 m ( h 2 ) ( J s ( h e z ) 𝒞 + s ( j ) ( h e z ) + J + s ( h e z ) 𝒞 s ( j ) ( h e z ) ) ,
    28.24.3 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m = 0 ( 1 ) A 2 + 1 2 m + 1 ( h 2 ) A 2 s + 1 2 m + 1 ( h 2 ) ( J s ( h e z ) 𝒞 + s + 1 ( j ) ( h e z ) + J + s + 1 ( h e z ) 𝒞 s ( j ) ( h e z ) ) ,
    28.24.4 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m = 0 ( 1 ) B 2 + 1 2 m + 1 ( h 2 ) B 2 s + 1 2 m + 1 ( h 2 ) ( J s ( h e z ) 𝒞 + s + 1 ( j ) ( h e z ) J + s + 1 ( h e z ) 𝒞 s ( j ) ( h e z ) ) ,
    For further power series of Mathieu radial functions of integer order for small parameters and improved convergence rate see Larsen et al. (2009).
    29: 33.16 Connection Formulas
    33.16.1 F ( η , ρ ) = ( 2 + 1 ) ! C ( η ) ( 2 η ) + 1 f ( 1 / η 2 , ; η ρ ) ,
    33.16.6 f ( ϵ , ; r ) = ( 1 ) + 1 ( 2 π τ e 2 π / τ 1 A ( ϵ , ) ) 1 / 2 F ( 1 / τ , τ r ) ,
    30: Bibliography V
  • A. L. Van Buren, R. V. Baier, and S. Hanish (1970) A Fortran computer program for calculating the oblate spheroidal radial functions of the first and second kind and their first derivatives. NRL Report No. 6959 Naval Res. Lab.  Washingtion, D.C..
  • A. L. Van Buren and J. E. Boisvert (2002) Accurate calculation of prolate spheroidal radial functions of the first kind and their first derivatives. Quart. Appl. Math. 60 (3), pp. 589–599.
  • A. L. Van Buren and J. E. Boisvert (2004) Improved calculation of prolate spheroidal radial functions of the second kind and their first derivatives. Quart. Appl. Math. 62 (3), pp. 493–507.