About the Project

q-zill-Salam--Chihara%20polynomials

AdvancedHelp

(0.004 seconds)

1—10 of 316 matching pages

1: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
§31.5 Solutions Analytic at Three Singularities: Heun Polynomials
31.5.2 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) = H ( a , q n , m ; n , β , γ , δ ; z )
is a polynomial of degree n , and hence a solution of (31.2.1) that is analytic at all three finite singularities 0 , 1 , a . These solutions are the Heun polynomials. …
2: 35.4 Partitions and Zonal Polynomials
§35.4 Partitions and Zonal Polynomials
Normalization
Orthogonal Invariance
Summation
Mean-Value
3: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
Euler Numbers and Polynomials
The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
4: 18.3 Definitions
§18.3 Definitions
For expressions of ultraspherical, Chebyshev, and Legendre polynomials in terms of Jacobi polynomials, see §18.7(i). …For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). …
Bessel polynomials
Bessel polynomials are often included among the classical OP’s. …
5: 18 Orthogonal Polynomials
Chapter 18 Orthogonal Polynomials
6: 18.28 Askey–Wilson Class
§18.28(iii) Al-SalamChihara Polynomials
§18.28(iv) q 1 -Al-SalamChihara Polynomials
For further nondegenerate cases see Chihara and Ismail (1993) and Christiansen and Ismail (2006).
§18.28(v) Continuous q -Ultraspherical Polynomials
These polynomials are also called Rogers polynomials. …
7: 18.1 Notation
Classical OP’s
Hahn Class OP’s
Wilson Class OP’s
  • Al-SalamChihara: Q n ( x ; a , b | q ) .

  • Nor do we consider the shifted Jacobi polynomials: …
    8: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • P. G. Nevai (1979) Orthogonal polynomials. Mem. Amer. Math. Soc. 18 (213), pp. v+185 pp..
  • P. Nevai (1986) Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48 (1), pp. 3–167.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 9: Bibliography C
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • L. Chihara (1987) On the zeros of the Askey-Wilson polynomials, with applications to coding theory. SIAM J. Math. Anal. 18 (1), pp. 191–207.
  • T. S. Chihara (1978) An Introduction to Orthogonal Polynomials. Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York.
  • T. S. Chihara and M. E. H. Ismail (1993) Extremal measures for a system of orthogonal polynomials. Constr. Approx. 9, pp. 111–119.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • 10: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003) Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Comm. 150 (1), pp. 1–20.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • R. Askey (1985) Continuous Hahn polynomials. J. Phys. A 18 (16), pp. L1017–L1019.