About the Project

q-multinomial coefficient

AdvancedHelp

(0.002 seconds)

21—30 of 241 matching pages

21: 7.24 Approximations
  • Luke (1969b, pp. 323–324) covers 1 2 π erf x and e x 2 F ( x ) for 3 x 3 (the Chebyshev coefficients are given to 20D); π x e x 2 erfc x and 2 x F ( x ) for x 3 (the Chebyshev coefficients are given to 20D and 15D, respectively). Coefficients for the Fresnel integrals are given on pp. 328–330 (20D).

  • Bulirsch (1967) provides Chebyshev coefficients for the auxiliary functions f ( x ) and g ( x ) for x 3 (15D).

  • Schonfelder (1978) gives coefficients of Chebyshev expansions for x 1 erf x on 0 x 2 , for x e x 2 erfc x on [ 2 , ) , and for e x 2 erfc x on [ 0 , ) (30D).

  • Shepherd and Laframboise (1981) gives coefficients of Chebyshev series for ( 1 + 2 x ) e x 2 erfc x on ( 0 , ) (22D).

  • 22: 13.5 Continued Fractions
    13.5.1 M ( a , b , z ) M ( a + 1 , b + 1 , z ) = 1 + u 1 z 1 + u 2 z 1 + ,
    13.5.3 U ( a , b , z ) U ( a , b 1 , z ) = 1 + v 1 / z 1 + v 2 / z 1 + ,
    23: 13.17 Continued Fractions
    13.17.1 z M κ , μ ( z ) M κ 1 2 , μ + 1 2 ( z ) = 1 + u 1 z 1 + u 2 z 1 + ,
    13.17.3 W κ , μ ( z ) z W κ 1 2 , μ 1 2 ( z ) = 1 + v 1 / z 1 + v 2 / z 1 + ,
    24: 18.3 Definitions
    Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, standardizations, leading coefficients, and parameter constraints. …
    Name p n ( x ) ( a , b ) w ( x ) h n k n k ~ n / k n Constraints
    For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). …
    25: 33.11 Asymptotic Expansions for Large ρ
    33.11.1 H ± ( η , ρ ) e ± i θ ( η , ρ ) k = 0 ( a ) k ( b ) k k ! ( ± 2 i ρ ) k ,
    26: 9.19 Approximations
  • Prince (1975) covers Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) . The Chebyshev coefficients are given to 10-11D. Fortran programs are included. See also Razaz and Schonfelder (1981).

  • Németh (1992, Chapter 8) covers Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) , and integrals 0 x Ai ( t ) d t , 0 x Bi ( t ) d t , 0 x 0 v Ai ( t ) d t d v , 0 x 0 v Bi ( t ) d t d v (see also (9.10.20) and (9.10.21)). The Chebyshev coefficients are given to 15D. Chebyshev coefficients are also given for expansions of the second and higher (real) zeros of Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) , again to 15D.

  • Razaz and Schonfelder (1980) covers Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) . The Chebyshev coefficients are given to 30D.

  • Corless et al. (1992) describe a method of approximation based on subdividing into a triangular mesh, with values of Ai ( z ) , Ai ( z ) stored at the nodes. Ai ( z ) and Ai ( z ) are then computed from Taylor-series expansions centered at one of the nearest nodes. The Taylor coefficients are generated by recursion, starting from the stored values of Ai ( z ) , Ai ( z ) at the node. Similarly for Bi ( z ) , Bi ( z ) .

  • MacLeod (1994) supplies Chebyshev-series expansions to cover Gi ( x ) for 0 x < and Hi ( x ) for < x 0 . The Chebyshev coefficients are given to 20D.

  • 27: 29.7 Asymptotic Expansions
    29.7.1 a ν m ( k 2 ) p κ τ 0 τ 1 κ 1 τ 2 κ 2 ,
    29.7.3 τ 0 = 1 2 3 ( 1 + k 2 ) ( 1 + p 2 ) ,
    29.7.4 τ 1 = p 2 6 ( ( 1 + k 2 ) 2 ( p 2 + 3 ) 4 k 2 ( p 2 + 5 ) ) .
    29.7.6 τ 2 = 1 2 10 ( 1 + k 2 ) ( 1 k 2 ) 2 ( 5 p 4 + 34 p 2 + 9 ) ,
    29.7.7 τ 3 = p 2 14 ( ( 1 + k 2 ) 4 ( 33 p 4 + 410 p 2 + 405 ) 24 k 2 ( 1 + k 2 ) 2 ( 7 p 4 + 90 p 2 + 95 ) + 16 k 4 ( 9 p 4 + 130 p 2 + 173 ) ) ,
    28: 3.6 Linear Difference Equations
    3.6.1 a n w n + 1 b n w n + c n w n 1 = d n ,
    3.6.2 a n Δ 2 w n 1 + ( 2 a n b n ) Δ w n 1 + ( a n b n + c n ) w n 1 = d n ,
    3.6.3 a n w n + 1 b n w n + c n w n 1 = 0 ,
    3.6.8 a n e n = c n e n 1 d n p n ,
    3.6.17 a n w n + 1 b n w n = d n .
    29: 24.5 Recurrence Relations
    24.5.1 k = 0 n 1 ( n k ) B k ( x ) = n x n 1 , n = 2 , 3 , ,
    24.5.2 k = 0 n ( n k ) E k ( x ) + E n ( x ) = 2 x n , n = 1 , 2 , .
    24.5.3 k = 0 n 1 ( n k ) B k = 0 , n = 2 , 3 , ,
    24.5.4 k = 0 n ( 2 n 2 k ) E 2 k = 0 , n = 1 , 2 , ,
    24.5.5 k = 0 n ( n k ) 2 k E n k + E n = 2 .
    30: 2.2 Transcendental Equations
    In place of (2.2.1) assume that
    2.2.7 f ( x ) x + f 0 + f 1 x 1 + f 2 x 2 + , x .
    2.2.8 x y F 0 F 1 y 1 F 2 y 2 , y ,
    where F 0 = f 0 and s F s ( s 1 ) is the coefficient of x 1 in the asymptotic expansion of ( f ( x ) ) s (Lagrange’s formula for the reversion of series). …