q-analogs
♦
6 matching pages ♦
(0.006 seconds)
6 matching pages
1: 17.7 Special Cases of Higher Functions
…
βΊ
-Analog of Bailey’s Sum
… βΊF. H. Jackson’s Terminating -Analog of Dixon’s Sum
… βΊAndrews’ Terminating -Analog of (17.7.8)
… βΊAndrews’ Terminating -Analog
… βΊGasper–Rahman -Analogs of the Karlsson–Minton Sums
…2: 17.1 Special Notation
…
βΊThe main functions treated in this chapter are the basic hypergeometric (or -hypergeometric) function , the bilateral basic hypergeometric (or bilateral -hypergeometric) function , and the -analogs of the Appell functions , , , and .
…
3: Bibliography M
…
βΊ
A -analog of the summation theorem for hypergeometric series well-poised in
.
Adv. in Math. 57 (1), pp. 14–33.
…
βΊ
A -analog of hypergeometric series well-poised in and invariant -functions.
Adv. in Math. 58 (1), pp. 1–60.
βΊ
A -analog of the Gauss summation theorem for hypergeometric series in
.
Adv. in Math. 72 (1), pp. 59–131.
βΊ
A -analog of a Whipple’s transformation for hypergeometric series in
.
Adv. Math. 108 (1), pp. 1–76.
…
4: 17.9 Further Transformations of Functions
5: 24.16 Generalizations
…
βΊIn no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); -adic integer order Bernoulli numbers (Adelberg (1996)); -adic -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).
6: 17.6 Function
…
βΊ