About the Project

public key codes


(0.000 seconds)

3 matching pages

1: 27.16 Cryptography
Applications to cryptography rely on the disparity in computer time required to find large primes and to factor large integers. … For this reason, these are often called public key codes. …
2: Bibliography W
  • T. Watanabe, M. Natori, and T. Oguni (Eds.) (1994) Mathematical Software for the P.C. and Work Stations – A Collection of Fortran 77 Programs. North-Holland Publishing Co., Amsterdam.
  • R. J. Wells (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives. J. Quant. Spect. and Rad. Transfer 62 (1), pp. 29–48.
  • C. S. Whitehead (1911) On a generalization of the functions ber x, bei x, ker x, kei x. Quart. J. Pure Appl. Math. 42, pp. 316–342.
  • J. H. Wilkinson (1988) The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis. Oxford Science Publications, The Clarendon Press, Oxford University Press, Oxford.
  • M. E. Wojcicki (1961) Algorithm 44: Bessel functions computed recursively. Comm. ACM 4 (4), pp. 177–178.
  • 3: Bibliography B
  • E. Bannai (1990) Orthogonal Polynomials in Coding Theory and Algebraic Combinatorics. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 25–53.
  • A. R. Barnett (1981b) KLEIN: Coulomb functions for real λ and positive energy to high accuracy. Comput. Phys. Comm. 24 (2), pp. 141–159.
  • A. R. Barnett (1982) COULFG: Coulomb and Bessel functions and their derivatives, for real arguments, by Steed’s method. Comput. Phys. Comm. 27, pp. 147–166.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • K. H. Burrell (1974) Algorithm 484: Evaluation of the modified Bessel functions K0(Z) and K1(Z) for complex arguments. Comm. ACM 17 (9), pp. 524–526.