About the Project

properties

AdvancedHelp

(0.000 seconds)

31—40 of 199 matching pages

31: William P. Reinhardt
Reinhardt is a theoretical chemist and atomic physicist, who has always been interested in orthogonal polynomials and in the analyticity properties of the functions of mathematical physics. …
32: 4.14 Definitions and Periodicity
4.14.7 cot z = cos z sin z = 1 tan z .
33: 8.17 Incomplete Beta Functions
§8.17(i) Definitions and Basic Properties
§8.17(vii) Addendum to 8.17(i) Definitions and Basic Properties
34: 15.2 Definitions and Analytical Properties
§15.2 Definitions and Analytical Properties
§15.2(ii) Analytic Properties
The same properties hold for F ( a , b ; c ; z ) , except that as a function of c , F ( a , b ; c ; z ) in general has poles at c = 0 , 1 , 2 , . Because of the analytic properties with respect to a , b , and c , it is usually legitimate to take limits in formulas involving functions that are undefined for certain values of the parameters. …
35: 18.19 Hahn Class: Definitions
Hahn, Krawtchouk, Meixner, and Charlier
Table 18.19.1: Orthogonality properties for Hahn, Krawtchouk, Meixner, and Charlier OP’s: discrete sets, weight functions, standardizations, and parameter constraints.
p n ( x ) X w x h n
A special case of (18.19.8) is w ( 1 / 2 ) ( x ; π / 2 ) = π cosh ( π x ) .
36: Bibliography N
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • G. Nemes (2015c) The resurgence properties of the incomplete gamma function II. Stud. Appl. Math. 135 (1), pp. 86–116.
  • G. Nemes (2016) The resurgence properties of the incomplete gamma function, I. Anal. Appl. (Singap.) 14 (5), pp. 631–677.
  • 37: 25.14 Lerch’s Transcendent
    §25.14(ii) Properties
    For these and further properties see Erdélyi et al. (1953a, pp. 27–31).
    38: 33.14 Definitions and Basic Properties
    §33.14 Definitions and Basic Properties
    §33.14(i) Coulomb Wave Equation
    §33.14(ii) Regular Solution f ( ϵ , ; r )
    §33.14(iii) Irregular Solution h ( ϵ , ; r )
    The function s ( ϵ , ; r ) has the following properties: …
    39: 7.19 Voigt Functions
    §7.19(iii) Properties
    40: 10.42 Zeros
    Properties of the zeros of I ν ( z ) and K ν ( z ) may be deduced from those of J ν ( z ) and H ν ( 1 ) ( z ) , respectively, by application of the transformations (10.27.6) and (10.27.8). …