About the Project
NIST

prolate

AdvancedHelp

(0.000 seconds)

11—16 of 16 matching pages

11: Bibliography F
  • B. R. Frieden (1971) Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In Progress in Optics, E. Wolf (Ed.), Vol. 9, pp. 311–407.
  • 12: Bibliography H
  • S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King (1970) Tables of Radial Spheroidal Wave Functions, Vols. 1-3, Prolate, m = 0 , 1 , 2 ; Vols. 4-6, Oblate, m = 0 , 1 , 2 . Technical report Naval Research Laboratory, Washington, D.C..
  • 13: Bibliography B
  • T. A. Beu and R. I. Câmpeanu (1983a) Prolate angular spheroidal wave functions. Comput. Phys. Comm. 30 (2), pp. 187–192.
  • T. A. Beu and R. I. Câmpeanu (1983b) Prolate radial spheroidal wave functions. Comput. Phys. Comm. 30 (2), pp. 177–185.
  • 14: Bibliography M
  • J. W. Miles (1975) Asymptotic approximations for prolate spheroidal wave functions. Studies in Appl. Math. 54 (4), pp. 315–349.
  • H. J. W. Müller (1963) Asymptotic expansions of prolate spheroidal wave functions and their characteristic numbers. J. Reine Angew. Math. 212, pp. 26–48.
  • 15: Bibliography D
  • T. M. Dunster (1986) Uniform asymptotic expansions for prolate spheroidal functions with large parameters. SIAM J. Math. Anal. 17 (6), pp. 1495–1524.
  • 16: Bibliography G
  • A. Gil and J. Segura (1998) A code to evaluate prolate and oblate spheroidal harmonics. Comput. Phys. Comm. 108 (2-3), pp. 267–278.