About the Project

phase

AdvancedHelp

(0.001 seconds)

11—20 of 187 matching pages

11: 33.11 Asymptotic Expansions for Large ρ
where θ ( η , ρ ) is defined by (33.2.9), and a and b are defined by (33.8.3). …
F ( η , ρ ) = g ( η , ρ ) cos θ + f ( η , ρ ) sin θ ,
G ( η , ρ ) = f ( η , ρ ) cos θ g ( η , ρ ) sin θ ,
F ( η , ρ ) = g ^ ( η , ρ ) cos θ + f ^ ( η , ρ ) sin θ ,
G ( η , ρ ) = f ^ ( η , ρ ) cos θ g ^ ( η , ρ ) sin θ ,
12: 4.8 Identities
4.8.2 ln ( z 1 z 2 ) = ln z 1 + ln z 2 , π ph z 1 + ph z 2 π ,
4.8.4 ln z 1 z 2 = ln z 1 ln z 2 , π ph z 1 ph z 2 π .
4.8.6 ln ( z n ) = n ln z , n , π n ph z π ,
4.8.7 ln 1 z = ln z , | ph z | π .
4.8.15 a z b z = ( a b ) z , π ph a + ph b π ,
13: 12.9 Asymptotic Expansions for Large Variable
12.9.1 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , | ph z | 3 4 π δ ( < 3 4 π ) ,
12.9.2 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , | ph z | 1 4 π δ ( < 1 4 π ) .
12.9.3 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s ± i 2 π Γ ( 1 2 + a ) e i π a e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 5 4 π δ ,
12.9.4 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s ± i Γ ( 1 2 a ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 3 4 π δ .
14: 15.6 Integral Representations
15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
In (15.6.3) the point 1 / ( z 1 ) lies outside the integration contour, the contour cuts the real axis between t = 1 and 0 , at which point ph t = π and ph ( 1 + t ) = 0 . In (15.6.4) the point 1 / z lies outside the integration contour, and at the point where the contour cuts the negative real axis ph t = π and ph ( 1 t ) = 0 . … At the starting point ph t and ph ( 1 t ) are zero. …
15: 10.37 Inequalities; Monotonicity
If 0 ν < μ and | ph z | 1 2 π , then …Note that previously we did mention that (10.37.1) holds for | ph z | < π . …
16: 10.42 Zeros
The distribution of the zeros of K n ( n z ) in the sector 3 2 π ph z 1 2 π in the cases n = 1 , 5 , 10 is obtained on rotating Figures 10.21.2, 10.21.4, 10.21.6, respectively, through an angle 1 2 π so that in each case the cut lies along the positive imaginary axis. The zeros in the sector 1 2 π ph z 3 2 π are their conjugates. K n ( z ) has no zeros in the sector | ph z | 1 2 π ; this result remains true when n is replaced by any real number ν . For the number of zeros of K ν ( z ) in the sector | ph z | π , when ν is real, see Watson (1944, pp. 511–513). …
17: 33.13 Complex Variable and Parameters
The quantities C ( η ) , σ ( η ) , and R , given by (33.2.6), (33.2.10), and (33.4.1), respectively, must be defined consistently so that
33.13.1 C ( η ) = 2 e i σ ( η ) ( π η / 2 ) Γ ( + 1 i η ) / Γ ( 2 + 2 ) ,
18: 33.2 Definitions and Basic Properties
33.2.10 σ ( η ) = ph Γ ( + 1 + i η ) ,
the branch of the phase in (33.2.10) being zero when η = 0 and continuous elsewhere. σ ( η ) is the Coulomb phase shift. … Also, e i σ ( η ) H ± ( η , ρ ) are analytic functions of η when < η < . …
19: 11.6 Asymptotic Expansions
11.6.1 𝐊 ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | π δ ,
11.6.2 𝐌 ν ( z ) 1 π k = 0 ( 1 ) k + 1 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | 1 2 π δ .
11.6.3 0 z 𝐊 0 ( t ) d t 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 1 ) k + 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | π δ ,
20: 4.2 Definitions
For ph z see §1.9(i). … For example, with the definition (4.2.5) the identity (4.8.7) is valid only when | ph z | < π , but with the closed definition the identity (4.8.7) is valid when | ph z | π . … The general value of the phase is given by … where ph z [ π , π ] for the principal value of z a , and is unrestricted in the general case. …
ph ( z a ) = a ph z .