About the Project

permutation%20symmetry

AdvancedHelp

(0.001 seconds)

21—30 of 158 matching pages

21: 10.73 Physical Applications
Bessel functions of the first kind, J n ( x ) , arise naturally in applications having cylindrical symmetry in which the physics is described either by Laplace’s equation 2 V = 0 , or by the Helmholtz equation ( 2 + k 2 ) ψ = 0 . … See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). … Accordingly, the spherical Bessel functions appear in all problems in three dimensions with spherical symmetry involving the scattering of electromagnetic radiation. …
22: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • RISC Combinatorics Group (website) Research Institute for Symbolic Computation, Hagenberg im Mühlkreis, Austria.
  • 23: 18.6 Symmetry, Special Values, and Limits to Monomials
    §18.6 Symmetry, Special Values, and Limits to Monomials
    §18.6(i) Symmetry and Special Values
    Table 18.6.1: Classical OP’s: symmetry and special values.
    p n ( x ) p n ( x ) p n ( 1 ) p 2 n ( 0 ) p 2 n + 1 ( 0 )
    24: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • J. Baik, P. Deift, and K. Johansson (1999) On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (4), pp. 1119–1178.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • 25: 7.4 Symmetry
    §7.4 Symmetry
    g ( z ) = 2 sin ( 1 4 π + 1 2 π z 2 ) g ( z ) .
    26: 19.36 Methods of Computation
    19.36.2 1 3 14 E 2 + 1 6 E 3 + 9 88 E 2 2 3 22 E 4 9 52 E 2 E 3 + 3 26 E 5 1 16 E 2 3 + 3 40 E 3 2 + 3 20 E 2 E 4 + 45 272 E 2 2 E 3 9 68 ( E 3 E 4 + E 2 E 5 ) .
    If x , y , and z are permuted so that 0 x < y < z , then the computation of R F ( x , y , z ) is fastest if we make c 0 2 a 0 2 / 2 by choosing θ = 1 when y < ( x + z ) / 2 or θ = 1 when y ( x + z ) / 2 . … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …
    27: 19.21 Connection Formulas
    Let y , z , and p be positive and distinct, and permute y and z to ensure that y does not lie between z and p . … Because R G is completely symmetric, x , y , z can be permuted on the right-hand side of (19.21.10) so that ( x z ) ( y z ) 0 if the variables are real, thereby avoiding cancellations when R G is calculated from R F and R D (see §19.36(i)). …where both summations extend over the three cyclic permutations of x , y , z . … and x , y , z may be permuted. … For each value of p , permutation of x , y , z produces three values of q , one of which lies in the same region as p and two lie in the other region of the same type. …
    28: 14.31 Other Applications
    Applications of toroidal functions include expansion of vacuum magnetic fields in stellarators and tokamaks (van Milligen and López Fraguas (1994)), analytic solutions of Poisson’s equation in channel-like geometries (Hoyles et al. (1998)), and Dirichlet problems with toroidal symmetry (Gil et al. (2000)). …
    29: 36.2 Catastrophes and Canonical Integrals
    §36.2(iii) Symmetries
    36.2.28 Ψ ( E ) ( 0 , 0 , z ) = Ψ ( E ) ( 0 , 0 , z ) ¯ = 2 π π z 27 exp ( 2 27 i z 3 ) ( J 1 / 6 ( 2 27 z 3 ) + i J 1 / 6 ( 2 27 z 3 ) ) , z 0 ,
    36.2.29 Ψ ( H ) ( 0 , 0 , z ) = Ψ ( H ) ( 0 , 0 , z ) ¯ = 2 1 / 3 3 exp ( 1 27 i z 3 ) Ψ ( E ) ( 0 , 0 , z 2 2 / 3 ) , < z < .
    30: 8 Incomplete Gamma and Related
    Functions