About the Project

painleve%C3%A9%20transcendents

AdvancedHelp

(0.002 seconds)

11—20 of 138 matching pages

11: 32.5 Integral Equations
§32.5 Integral Equations
12: 32.4 Isomonodromy Problems
Suppose …
§32.4(ii) First Painlevé Equation
§32.4(iii) Second Painlevé Equation
§32.4(iv) Third Painlevé Equation
13: Peter A. Clarkson
Clarkson has published numerous papers on integrable systems (primarily Painlevé equations), special functions, and symmetry methods for differential equations. …
  • 14: 15.17 Mathematical Applications
    This topic is treated in §§15.10 and 15.11. The logarithmic derivatives of some hypergeometric functions for which quadratic transformations exist (§15.8(iii)) are solutions of Painlevé equations. … …
    15: Bibliography I
  • A. R. Its, A. S. Fokas, and A. A. Kapaev (1994) On the asymptotic analysis of the Painlevé equations via the isomonodromy method. Nonlinearity 7 (5), pp. 1291–1325.
  • A. R. Its and A. A. Kapaev (1987) The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent. Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).
  • A. R. Its and A. A. Kapaev (2003) Quasi-linear Stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16 (1), pp. 363–386.
  • A. R. Its and A. A. Kapaev (1998) Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution. J. Phys. A 31 (17), pp. 4073–4113.
  • A. R. Its and V. Yu. Novokshënov (1986) The Isomonodromic Deformation Method in the Theory of Painlevé Equations. Lecture Notes in Mathematics, Vol. 1191, Springer-Verlag, Berlin.
  • 16: 32.3 Graphics
    §32.3 Graphics
    §32.3(i) First Painlevé Equation
    §32.3(ii) Second Painlevé Equation with α = 0
    §32.3(iii) Fourth Painlevé Equation with β = 0
    See accompanying text
    Figure 32.3.10: u k ( x ; 5 2 ) for 12 x 4 with k = 0.24499 2 , 0.24499 3 . … Magnify
    17: Bibliography K
  • E. Kanzieper (2002) Replica field theories, Painlevé transcendents, and exact correlation functions. Phys. Rev. Lett. 89 (25), pp. (250201–1)–(250201–4).
  • A. A. Kapaev and A. V. Kitaev (1993) Connection formulae for the first Painlevé transcendent in the complex domain. Lett. Math. Phys. 27 (4), pp. 243–252.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • A. V. Kitaev (1994) Elliptic asymptotics of the first and second Painlevé transcendents. Uspekhi Mat. Nauk 49 (1(295)), pp. 77–140 (Russian).
  • M. D. Kruskal and P. A. Clarkson (1992) The Painlevé-Kowalevski and poly-Painlevé tests for integrability. Stud. Appl. Math. 86 (2), pp. 87–165.
  • 18: Bibliography F
  • A. S. Fokas and M. J. Ablowitz (1982) On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23 (11), pp. 2033–2042.
  • A. S. Fokas, B. Grammaticos, and A. Ramani (1993) From continuous to discrete Painlevé equations. J. Math. Anal. Appl. 180 (2), pp. 342–360.
  • A. S. Fokas, A. R. Its, and A. V. Kitaev (1991) Discrete Painlevé equations and their appearance in quantum gravity. Comm. Math. Phys. 142 (2), pp. 313–344.
  • A. S. Fokas, A. R. Its, and X. Zhou (1992) Continuous and Discrete Painlevé Equations. In Painlevé Transcendents: Their Asymptotics and Physical Applications, D. Levi and P. Winternitz (Eds.), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, pp. 33–47.
  • A. S. Fokas, A. R. Its, A. A. Kapaev, and V. Yu. Novokshënov (2006) Painlevé Transcendents: The Riemann-Hilbert Approach. Mathematical Surveys and Monographs, Vol. 128, American Mathematical Society, Providence, RI.
  • 19: Bibliography O
  • K. Okamoto (1986) Studies on the Painlevé equations. III. Second and fourth Painlevé equations, P II and P IV . Math. Ann. 275 (2), pp. 221–255.
  • K. Okamoto (1987a) Studies on the Painlevé equations. I. Sixth Painlevé equation P VI . Ann. Mat. Pura Appl. (4) 146, pp. 337–381.
  • K. Okamoto (1987b) Studies on the Painlevé equations. II. Fifth Painlevé equation P V . Japan. J. Math. (N.S.) 13 (1), pp. 47–76.
  • K. Okamoto (1987c) Studies on the Painlevé equations. IV. Third Painlevé equation P III . Funkcial. Ekvac. 30 (2-3), pp. 305–332.
  • S. Olver (2011) Numerical solution of Riemann-Hilbert problems: Painlevé II. Found. Comput. Math. 11 (2), pp. 153–179.
  • 20: 32.7 Bäcklund Transformations
    §32.7 Bäcklund Transformations
    §32.7(ii) Second Painlevé Equation
    §32.7(iii) Third Painlevé Equation