About the Project

of the first kind

AdvancedHelp

(0.014 seconds)

31—40 of 282 matching pages

31: 14.7 Integer Degree and Order
When m is even and m n , 𝖯 n m ( x ) and P n m ( x ) are polynomials of degree n . …
14.7.17 𝖯 n m ( x ) = ( 1 ) n m 𝖯 n m ( x ) ,
32: 26.8 Set Partitions: Stirling Numbers
Table 26.8.1: Stirling numbers of the first kind s ( n , k ) .
n k
s ( n , 0 ) = 0 ,
s ( n , 1 ) = ( 1 ) n 1 ( n 1 ) ! ,
26.8.18 s ( n , k ) = s ( n 1 , k 1 ) ( n 1 ) s ( n 1 , k ) ,
33: 10.44 Sums
If 𝒵 = I and the upper signs are taken, then the restriction on λ is unnecessary. …
I ν ( z ) = k = 0 z k k ! J ν + k ( z ) ,
The restriction | v | < | u | is unnecessary when 𝒵 = I and ν is an integer. …
10.44.5 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 2 k = 1 I 2 k ( z ) k ,
10.44.6 K n ( z ) = n ! ( 1 2 z ) n 2 k = 0 n 1 ( 1 ) k ( 1 2 z ) k I k ( z ) k ! ( n k ) + ( 1 ) n 1 ( ln ( 1 2 z ) ψ ( n + 1 ) ) I n ( z ) + ( 1 ) n k = 1 ( n + 2 k ) I n + 2 k ( z ) k ( n + k ) ,
34: 14.22 Graphics
See accompanying text
Figure 14.22.1: P 1 / 2 0 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
See accompanying text
Figure 14.22.2: P 1 / 2 1 / 2 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
See accompanying text
Figure 14.22.3: P 1 / 2 1 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
35: 14.27 Zeros
P ν μ ( x ± i 0 ) (either side of the cut) has exactly one zero in the interval ( , 1 ) if either of the following sets of conditions holds: …For all other values of the parameters P ν μ ( x ± i 0 ) has no zeros in the interval ( , 1 ) . For complex zeros of P ν μ ( z ) see Hobson (1931, §§233, 234, and 238).
36: 14.34 Software
37: 19.7 Connection Formulas
K ( 1 / k ) = k ( K ( k ) i K ( k ) ) ,
K ( 1 / k ) = k ( K ( k ) ± i K ( k ) ) ,
F ( ϕ , k 1 ) = k F ( β , k ) ,
F ( ϕ , i k ) = κ F ( θ , κ ) ,
F ( i ϕ , k ) = i F ( ψ , k ) ,
38: 14.28 Sums
14.28.1 P ν ( z 1 z 2 ( z 1 2 1 ) 1 / 2 ( z 2 2 1 ) 1 / 2 cos ϕ ) = P ν ( z 1 ) P ν ( z 2 ) + 2 m = 1 ( 1 ) m Γ ( ν m + 1 ) Γ ( ν + m + 1 ) P ν m ( z 1 ) P ν m ( z 2 ) cos ( m ϕ ) ,
14.28.2 n = 0 ( 2 n + 1 ) Q n ( z 1 ) P n ( z 2 ) = 1 z 1 z 2 , z 1 1 , z 2 2 ,
39: 10.31 Power Series
For I ν ( z ) see (10.25.2) and (10.27.1). …
10.31.1 K n ( z ) = 1 2 ( 1 2 z ) n k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + ( 1 ) n + 1 ln ( 1 2 z ) I n ( z ) + ( 1 ) n 1 2 ( 1 2 z ) n k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
40: 19.4 Derivatives and Differential Equations
d K ( k ) d k = E ( k ) k 2 K ( k ) k k 2 ,
d ( E ( k ) k 2 K ( k ) ) d k = k K ( k ) ,
d E ( k ) d k = E ( k ) K ( k ) k ,
19.4.3 d 2 E ( k ) d k 2 = 1 k d K ( k ) d k = k 2 K ( k ) E ( k ) k 2 k 2 ,
If ϕ = π / 2 , then these two equations become hypergeometric differential equations (15.10.1) for K ( k ) and E ( k ) . …