About the Project

of multivalued function

AdvancedHelp

(0.002 seconds)

31—37 of 37 matching pages

31: 7.18 Repeated Integrals of the Complementary Error Function
The confluent hypergeometric function on the right-hand side of (7.18.10) is multivalued and in the sectors 1 2 π < | ph z | < π one has to use the analytic continuation formula (13.2.12). …
32: 12.7 Relations to Other Functions
(It should be observed that the functions on the right-hand sides of (12.7.14) are multivalued; hence, for example, z cannot be replaced simply by z .)
33: 19.18 Derivatives and Differential Equations
§19.18(i) Derivatives
§19.18(ii) Differential Equations
The function w = R a ( 1 2 , 1 2 ; x + y , x y ) satisfies an Euler–Poisson–Darboux equation: …Also W = R a ( 1 2 , 1 2 ; t + r , t r ) , with r = x 2 + y 2 , satisfies a wave equation: …Similarly, the function u = R a ( 1 2 , 1 2 ; x + i y , x i y ) satisfies an equation of axially symmetric potential theory: …
34: 19.2 Definitions
Let s 2 ( t ) be a cubic or quartic polynomial in t with simple zeros, and let r ( s , t ) be a rational function of s and t containing at least one odd power of s . …where p j is a polynomial in t while ρ and σ are rational functions of t . …
§19.2(iv) A Related Function: R C ( x , y )
In (19.2.18)–(19.2.22) the inverse trigonometric and hyperbolic functions assume their principal values (§§4.23(ii) and 4.37(ii)). When x and y are positive, R C ( x , y ) is an inverse circular function if x < y and an inverse hyperbolic function (or logarithm) if x > y : …
35: 19.20 Special Cases
In this subsection, and also §§19.20(ii)19.20(v), the variables of all R -functions satisfy the constraints specified in §19.16(i) unless other conditions are stated. …
19.20.5 2 R G ( x , y , y ) = y R C ( x , y ) + x .
When the variables are real and distinct, the various cases of R J ( x , y , z , p ) are called circular (hyperbolic) cases if ( p x ) ( p y ) ( p z ) is positive (negative), because they typically occur in conjunction with inverse circular (hyperbolic) functions. …
19.20.19 R D ( x , y , z ) 3 x 1 / 2 y 1 / 2 z 1 / 2 , z / x y 0 .
19.20.25 R c ( 𝐛 ; 𝐳 ) = j = 1 n z j b j ,
36: 19.25 Relations to Other Functions
§19.25 Relations to Other Functions
§19.25(iv) Theta Functions
§19.25(v) Jacobian Elliptic Functions
§19.25(vi) Weierstrass Elliptic Functions
37: 19.21 Connection Formulas
The complete cases of R F and R G have connection formulas resulting from those for the Gauss hypergeometric function (Erdélyi et al. (1953a, §2.9)). …
19.21.7 ( x y ) R D ( y , z , x ) + ( z y ) R D ( x , y , z ) = 3 R F ( x , y , z ) 3 y 1 / 2 x 1 / 2 z 1 / 2 ,
19.21.8 R D ( y , z , x ) + R D ( z , x , y ) + R D ( x , y , z ) = 3 x 1 / 2 y 1 / 2 z 1 / 2 ,
19.21.10 2 R G ( x , y , z ) = z R F ( x , y , z ) 1 3 ( x z ) ( y z ) R D ( x , y , z ) + x 1 / 2 y 1 / 2 z 1 / 2 , z 0 .
19.21.12 ( p x ) R J ( x , y , z , p ) + ( q x ) R J ( x , y , z , q ) = 3 R F ( x , y , z ) 3 R C ( ξ , η ) ,