About the Project

of%20zeros

AdvancedHelp

(0.002 seconds)

11—20 of 33 matching pages

11: 13.30 Tables
β–Ί
  • Slater (1960) tabulates M ⁑ ( a , b , x ) for a = 1 ⁒ ( .1 ) ⁒ 1 , b = 0.1 ⁒ ( .1 ) ⁒ 1 , and x = 0.1 ⁒ ( .1 ) ⁒ 10 , 7–9S; M ⁑ ( a , b , 1 ) for a = 11 ⁒ ( .2 ) ⁒ 2 and b = 4 ⁒ ( .2 ) ⁒ 1 , 7D; the smallest positive x -zero of M ⁑ ( a , b , x ) for a = 4 ⁒ ( .1 ) 0.1 and b = 0.1 ⁒ ( .1 ) ⁒ 2.5 , 7D.

  • β–Ί
  • Abramowitz and Stegun (1964, Chapter 13) tabulates M ⁑ ( a , b , x ) for a = 1 ⁒ ( .1 ) ⁒ 1 , b = 0.1 ⁒ ( .1 ) ⁒ 1 , and x = 0.1 ⁒ ( .1 ) ⁒ 1 ⁒ ( 1 ) ⁒ 10 , 8S. Also the smallest positive x -zero of M ⁑ ( a , b , x ) for a = 1 ⁒ ( .1 ) 0.1 and b = 0.1 ⁒ ( .1 ) ⁒ 1 , 7D.

  • β–Ί
  • Zhang and Jin (1996, pp. 411–423) tabulates M ⁑ ( a , b , x ) and U ⁑ ( a , b , x ) for a = 5 ⁒ ( .5 ) ⁒ 5 , b = 0.5 ⁒ ( .5 ) ⁒ 5 , and x = 0.1 , 1 , 5 , 10 , 20 , 30 , 8S (for M ⁑ ( a , b , x ) ) and 7S (for U ⁑ ( a , b , x ) ).

  • 12: Bibliography S
    β–Ί
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • β–Ί
  • J. Segura (1998) A global Newton method for the zeros of cylinder functions. Numer. Algorithms 18 (3-4), pp. 259–276.
  • β–Ί
  • J. Segura (2001) Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros. Math. Comp. 70 (235), pp. 1205–1220.
  • β–Ί
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • β–Ί
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • 13: Bibliography K
    β–Ί
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • β–Ί
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • β–Ί
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • β–Ί
  • K. S. Kölbig (1972a) Complex zeros of two incomplete Riemann zeta functions. Math. Comp. 26 (118), pp. 551–565.
  • β–Ί
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 14: 12.11 Zeros
    β–Ί
    12.11.9 u a , 1 2 1 2 ⁒ ΞΌ ⁒ ( 1 1.85575 708 ⁒ ΞΌ 4 / 3 0.34438 34 ⁒ ΞΌ 8 / 3 0.16871 5 ⁒ ΞΌ 4 0.11414 ⁒ ΞΌ 16 / 3 0.0808 ⁒ ΞΌ 20 / 3 β‹― ) ,
    15: Bibliography V
    β–Ί
  • J. van de Lune, H. J. J. te Riele, and D. T. Winter (1986) On the zeros of the Riemann zeta function in the critical strip. IV. Math. Comp. 46 (174), pp. 667–681.
  • β–Ί
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • β–Ί
  • H. Volkmer (2008) Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials. J. Comput. Appl. Math. 213 (2), pp. 488–500.
  • β–Ί
  • M. N. Vrahatis, T. N. Grapsa, O. Ragos, and F. A. Zafiropoulos (1997a) On the localization and computation of zeros of Bessel functions. Z. Angew. Math. Mech. 77 (6), pp. 467–475.
  • β–Ί
  • M. N. Vrahatis, O. Ragos, T. Skiniotis, F. A. Zafiropoulos, and T. N. Grapsa (1997b) The topological degree theory for the localization and computation of complex zeros of Bessel functions. Numer. Funct. Anal. Optim. 18 (1-2), pp. 227–234.
  • 16: Bibliography F
    β–Ί
  • B. R. Fabijonas and F. W. J. Olver (1999) On the reversion of an asymptotic expansion and the zeros of the Airy functions. SIAM Rev. 41 (4), pp. 762–773.
  • β–Ί
  • FDLIBM (free C library)
  • β–Ί
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • β–Ί
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • β–Ί
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 17: 25.3 Graphics
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 25.3.1: Riemann zeta function ΢ ⁑ ( x ) and its derivative ΢ ⁑ ( x ) , 20 x 10 . Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 25.3.4: Z ⁑ ( t ) , 0 t 50 . Z ⁑ ( t ) and ΞΆ ⁑ ( 1 2 + i ⁒ t ) have the same zeros. … Magnify
    18: 12.19 Tables
    β–Ί
  • Murzewski and Sowa (1972) includes D n ⁑ ( x ) ( = U ⁑ ( n 1 2 , x ) ) for n = 1 ⁒ ( 1 ) ⁒ 20 , x = 0 ⁒ ( .05 ) ⁒ 3 , 7S.

  • β–Ί
  • Zhang and Jin (1996, pp. 455–473) includes U ⁑ ( ± n 1 2 , x ) , V ⁑ ( ± n 1 2 , x ) , U ⁑ ( ± Ξ½ 1 2 , x ) , V ⁑ ( ± Ξ½ 1 2 , x ) , and derivatives, Ξ½ = n + 1 2 , n = 0 ⁒ ( 1 ) ⁒ 10 ⁒ ( 10 ) ⁒ 30 , x = 0.5 , 1 , 5 , 10 , 30 , 50 , 8S; W ⁑ ( a , ± x ) , W ⁑ ( a , ± x ) , and derivatives, a = h ⁒ ( 1 ) ⁒ 5 + h , x = 0.5 , 1 and a = h ⁒ ( 1 ) ⁒ 5 + h , x = 5 , h = 0 , 0.5 , 8S. Also, first zeros of U ⁑ ( a , x ) , V ⁑ ( a , x ) , and of derivatives, a = 6 ⁒ ( .5 ) 1 , 6D; first three zeros of W ⁑ ( a , x ) and of derivative, a = 0 ⁒ ( .5 ) ⁒ 4 , 6D; first three zeros of W ⁑ ( a , ± x ) and of derivative, a = 0.5 ⁒ ( .5 ) ⁒ 5.5 , 6D; real and imaginary parts of U ⁑ ( a , z ) , a = 1.5 ⁒ ( 1 ) ⁒ 1.5 , z = x + i ⁒ y , x = 0.5 , 1 , 5 , 10 , y = 0 ⁒ ( .5 ) ⁒ 10 , 8S.

  • 19: Bibliography B
    β–Ί
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • β–Ί
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • β–Ί
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • β–Ί
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • β–Ί
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 20: Bibliography M
    β–Ί
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • β–Ί
  • R. C. McCann (1977) Inequalities for the zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 166–170.
  • β–Ί
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • β–Ί
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • β–Ί
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.