About the Project

of%20the%20first%20kind

AdvancedHelp

(0.002 seconds)

21—26 of 26 matching pages

21: Errata
  • Subsection 19.2(ii) and Equation (19.2.9)

    The material surrounding (19.2.8), (19.2.9) has been updated so that the complementary complete elliptic integrals of the first and second kind are defined with consistent multivalued properties and correct analytic continuation. In particular, (19.2.9) has been corrected to read

    19.2.9
    K ( k ) = { K ( k ) , | ph k | 1 2 π , K ( k ) 2 i K ( k ) , 1 2 π < ± ph k < π ,
    E ( k ) = { E ( k ) , | ph k | 1 2 π , E ( k ) 2 i ( K ( k ) E ( k ) ) , 1 2 π < ± ph k < π
  • Chapters 1 Algebraic and Analytic Methods, 10 Bessel Functions, 14 Legendre and Related Functions, 18 Orthogonal Polynomials, 29 Lamé Functions

    Over the preceding two months, the subscript parameters of the Ferrers and Legendre functions, 𝖯 n , 𝖰 n , P n , Q n , 𝑸 n and the Laguerre polynomial, L n , were incorrectly displayed as superscripts. Reported by Roy Hughes on 2022-05-23

  • Equation (14.6.6)
    14.6.6 𝖯 ν m ( x ) = ( 1 x 2 ) m / 2 x 1 x 1 𝖯 ν ( x ) ( d x ) m

    The right-hand side has been corrected by replacing the Legendre function P ν ( x ) with the Ferrers function 𝖯 ν ( x ) .

  • Equations (22.14.16), (22.14.17)
    22.14.16 0 K ( k ) ln ( sn ( t , k ) ) d t = π 4 K ( k ) 1 2 K ( k ) ln k ,
    22.14.17 0 K ( k ) ln ( cn ( t , k ) ) d t = π 4 K ( k ) + 1 2 K ( k ) ln ( k / k )

    Originally, a factor of π was missing from the terms containing the 1 4 K ( k ) .

    Reported by Fred Hucht on 2020-08-06

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • 22: 26.14 Permutations: Order Notation
    A descent of a permutation is a pair of adjacent elements for which the first is larger than the second. …The major index is the sum of all positions that mark the first element of a descent: … In this subsection S ( n , k ) is again the Stirling number of the second kind26.8), and B m is the m th Bernoulli number (§24.2(i)). …
    26.14.7 n k = j = 0 n k ( 1 ) n k j j ! ( n j k ) S ( n , j ) ,
    26.14.12 S ( n , m ) = 1 m ! k = 0 n 1 n k ( k n m ) , n m , n 1 .
    23: 2.11 Remainder Terms; Stokes Phenomenon
    First, it is impossible to bound the tail by majorizing its terms. … Taking m = 10 in (2.11.2), the first three terms give us the approximation … The first of these two references also provides an introduction to the powerful Borel transform theory. … Subtraction of this result from the sum of the first 5 terms in (2.11.25) yields 0. … For example, using double precision d 20 is found to agree with (2.11.31) to 13D. …
    24: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. In Special Functions (Hong Kong, 1999), C. Dunkl, M. Ismail, and R. Wong (Eds.), pp. 293–308.
  • R. Roy (2011) Sources in the development of mathematics. Cambridge University Press, Cambridge.
  • 25: Bibliography C
  • B. C. Carlson (1964) Normal elliptic integrals of the first and second kinds. Duke Math. J. 31 (3), pp. 405–419.
  • B. C. Carlson (1977a) Elliptic integrals of the first kind. SIAM J. Math. Anal. 8 (2), pp. 231–242.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • W. J. Cody (1983) Algorithm 597: Sequence of modified Bessel functions of the first kind. ACM Trans. Math. Software 9 (2), pp. 242–245.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • 26: Bibliography S
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • R. Szmytkowski (2006) On the derivative of the Legendre function of the first kind with respect to its degree. J. Phys. A 39 (49), pp. 15147–15172.
  • R. Szmytkowski (2009) On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Chem. 46 (1), pp. 231–260.
  • R. Szmytkowski (2011) On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Chem. 49 (7), pp. 1436–1477.
  • R. Szmytkowski (2012) On parameter derivatives of the associated Legendre function of the first kind (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Anal. Appl. 386 (1), pp. 332–342.