About the Project

of%20imaginary%20order

AdvancedHelp

(0.003 seconds)

11—15 of 15 matching pages

11: 3.8 Nonlinear Equations
for all n sufficiently large, where A and p are independent of n , then the sequence is said to have convergence of the p th order. … … This is useful when f ( z ) satisfies a second-order linear differential equation because of the ease of computing f ′′ ( z n ) . … Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
12: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • Y. Ikebe, Y. Kikuchi, and I. Fujishiro (1991) Computing zeros and orders of Bessel functions. J. Comput. Appl. Math. 38 (1-3), pp. 169–184.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • 13: 3.4 Differentiation
    First-Order
    Second-Order
    Fourth-Order
    3.4.33 4 u 0 , 0 = 1 h 4 ( 20 u 0 , 0 8 ( u 1 , 0 + u 0 , 1 + u 1 , 0 + u 0 , 1 ) + 2 ( u 1 , 1 + u 1 , 1 + u 1 , 1 + u 1 , 1 ) + ( u 0 , 2 + u 2 , 0 + u 2 , 0 + u 0 , 2 ) ) + O ( h 2 ) ,
    3.4.34 4 u 0 , 0 = 1 6 h 4 ( 184 u 0 , 0 ( u 0 , 3 + u 0 , 3 + u 3 , 0 + u 3 , 0 ) + 14 ( u 0 , 2 + u 0 , 2 + u 2 , 0 + u 2 , 0 ) 77 ( u 0 , 1 + u 0 , 1 + u 1 , 0 + u 1 , 0 ) + 20 ( u 1 , 1 + u 1 , 1 + u 1 , 1 + u 1 , 1 ) ( u 1 , 2 + u 2 , 1 + u 1 , 2 + u 2 , 1 + u 1 , 2 + u 2 , 1 + u 1 , 2 + u 2 , 1 ) ) + O ( h 4 ) .
    14: Bibliography P
  • R. B. Paris (1992a) Smoothing of the Stokes phenomenon for high-order differential equations. Proc. Roy. Soc. London Ser. A 436, pp. 165–186.
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12 . In Selected Tables in Mathematical Statistics, H. L. Harter and D. B. Owen (Eds.), Vol. 2, pp. 199–388.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • A. Poquérusse and S. Alexiou (1999) Fast analytic formulas for the modified Bessel functions of imaginary order for spectral line broadening calculations. J. Quantit. Spec. and Rad. Trans. 62 (4), pp. 389–395.
  • 15: 9.9 Zeros
    They are denoted by a k , a k , b k , b k , respectively, arranged in ascending order of absolute value for k = 1 , 2 , . They lie in the sectors 1 3 π < ph z < 1 2 π and 1 2 π < ph z < 1 3 π , and are denoted by β k , β k , respectively, in the former sector, and by β k ¯ , β k ¯ , in the conjugate sector, again arranged in ascending order of absolute value (modulus) for k = 1 , 2 , . See §9.3(ii) for visualizations. …
    9.9.6 a k = T ( 3 8 π ( 4 k 1 ) ) ,
    9.9.7 Ai ( a k ) = ( 1 ) k 1 V ( 3 8 π ( 4 k 1 ) ) ,
    9.9.8 a k = U ( 3 8 π ( 4 k 3 ) ) ,