About the Project

natural

AdvancedHelp

(0.001 seconds)

21—30 of 393 matching pages

21: 6.4 Analytic Continuation
6.4.1 E 1 ( z ) = Ein ( z ) Ln z γ ;
6.4.2 E 1 ( z e 2 m π i ) = E 1 ( z ) 2 m π i , m ,
6.4.4 Ci ( z e ± π i ) = ± π i + Ci ( z ) ,
6.4.5 Chi ( z e ± π i ) = ± π i + Chi ( z ) ,
22: 5.9 Integral Representations
where Φ ( t ) = 1 t cot t + ln ( t sin t ) . …
5.9.10 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 2 0 arctan ( t / z ) e 2 π t 1 d t ,
5.9.10_1 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) z π 0 ln ( 1 e 2 π t ) t 2 + z 2 d t ,
5.9.10_2 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 0 e z t ( 1 e t 1 1 t + 1 2 ) d t t ,
5.9.13 ψ ( z ) = ln z + 0 ( 1 t 1 1 e t ) e t z d t ,
23: 4.45 Methods of Computation
The function ln x can always be computed from its ascending power series after preliminary scaling. …After computing ln ( 1 + y ) from (4.6.1) …
4.45.3 ln x = ln ξ + m ln 10 .
and since | y | 1 2 ln 10 = 1.15 , e y can be computed straightforwardly from (4.2.19). … For ln z and e z
24: 22.14 Integrals
22.14.1 sn ( x , k ) d x = k 1 ln ( dn ( x , k ) k cn ( x , k ) ) ,
22.14.4 cd ( x , k ) d x = k 1 ln ( nd ( x , k ) + k sd ( x , k ) ) ,
25: 4.47 Approximations
Clenshaw (1962) and Luke (1975, Chapter 3) give 20D coefficients for ln , exp , sin , cos , tan , cot , arcsin , arctan , arcsinh . … Hart et al. (1968) give ln , exp , sin , cos , tan , cot , arcsin , arccos , arctan , sinh , cosh , tanh , arcsinh , arccosh . … Luke (1975, Chapter 3) supplies real and complex approximations for ln , exp , sin , cos , tan , arctan , arcsinh . …
26: 27 Functions of Number Theory
27: 4.40 Integrals
4.40.4 csch x d x = ln ( tanh ( 1 2 x ) ) , 0 < x < .
4.40.6 coth x d x = ln ( sinh x ) , 0 < x < .
4.40.10 0 tanh ( a x ) tanh ( b x ) x d x = ln ( a b ) , a > 0 , b > 0 .
4.40.13 arctanh x d x = x arctanh x + 1 2 ln ( 1 x 2 ) , 1 < x < 1 ,
28: 7.17 Inverse Error Functions
7.17.5 u = 2 / ln ( π x 2 ln ( 1 / x ) ) ,
7.17.6 v = ln ( ln ( 1 / x ) ) 2 + ln π .
29: 8.4 Special Values
8.4.5 Γ ( 1 , z ) = e z ,
8.4.7 γ ( n + 1 , z ) = n ! ( 1 e z e n ( z ) ) ,
8.4.9 P ( n + 1 , z ) = 1 e z e n ( z ) ,
8.4.10 Q ( n + 1 , z ) = e z e n ( z ) ,
8.4.15 Γ ( n , z ) = ( 1 ) n n ! ( E 1 ( z ) e z k = 0 n 1 ( 1 ) k k ! z k + 1 ) = ( 1 ) n n ! ( ψ ( n + 1 ) ln z ) z n k = 0 k n ( z ) k k ! ( k n ) .
30: 25.8 Sums
25.8.4 k = 1 ( 1 ) k k ( ζ ( n k ) 1 ) = ln ( j = 0 n 1 Γ ( 2 e ( 2 j + 1 ) π i / n ) ) , n = 2 , 3 , 4 , .
25.8.7 k = 2 ζ ( k ) k z k = γ z + ln Γ ( 1 z ) , | z | < 1 .
25.8.8 k = 1 ζ ( 2 k ) k z 2 k = ln ( π z sin ( π z ) ) , | z | < 1 .
25.8.9 k = 1 ζ ( 2 k ) ( 2 k + 1 ) 2 2 k = 1 2 1 2 ln 2 .