About the Project

n-tuple formulas

AdvancedHelp

(0.002 seconds)

11—20 of 243 matching pages

11: Possible Errors in DLMF
One source of confusion, rather than actual errors, are some new functions which differ from those in Abramowitz and Stegun (1964) by scaling, shifts or constraints on the domain; see the Info box (click or hover over the [Uncaptioned image] icon) for links to defining formula. …
12: 18.42 Software
A more complete list of available software for computing these functions, and for generating formulas symbolically, is found in the Software Index. …
13: Gergő Nemes
As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
14: Wolter Groenevelt
As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
15: 3.5 Quadrature
Gauss–Legendre Formula
Gauss–Chebyshev Formula
Gauss–Laguerre Formula
a complex Gauss quadrature formula is available. …
16: 25.4 Reflection Formulas
§25.4 Reflection Formulas
25.4.1 ζ ( 1 s ) = 2 ( 2 π ) s cos ( 1 2 π s ) Γ ( s ) ζ ( s ) ,
25.4.2 ζ ( s ) = 2 ( 2 π ) s 1 sin ( 1 2 π s ) Γ ( 1 s ) ζ ( 1 s ) .
25.4.3 ξ ( s ) = ξ ( 1 s ) ,
17: 2.2 Transcendental Equations
where F 0 = f 0 and s F s ( s 1 ) is the coefficient of x 1 in the asymptotic expansion of ( f ( x ) ) s (Lagrange’s formula for the reversion of series). …
18: 25.19 Tables
  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.

  • Fletcher et al. (1962, §22.1) lists many sources for earlier tables of ζ ( s ) for both real and complex s . §22.133 gives sources for numerical values of coefficients in the Riemann–Siegel formula, §22.15 describes tables of values of ζ ( s , a ) , and §22.17 lists tables for some Dirichlet L -functions for real characters. For tables of dilogarithms, polylogarithms, and Clausen’s integral see §§22.84–22.858.

  • 19: 29.20 Methods of Computation
    Subsequently, formulas typified by (29.6.4) can be applied to compute the coefficients of the Fourier expansions of the corresponding Lamé functions by backward recursion followed by application of formulas typified by (29.6.5) and (29.6.6) to achieve normalization; compare §3.6. … §29.15(i) includes formulas for normalizing the eigenvectors. …
    20: 14.28 Sums
    §14.28(ii) Heine’s Formula