About the Project

multiplication theorems

AdvancedHelp

(0.001 seconds)

21—29 of 29 matching pages

21: 3.8 Nonlinear Equations
§3.8 Nonlinear Equations
For multiple zeros the convergence is linear, but if the multiplicity m is known then quadratic convergence can be restored by multiplying the ratio f ( z n ) / f ( z n ) in (3.8.4) by m . … has n zeros in , counting each zero according to its multiplicity. … The method converges locally and quadratically, except when the wanted quadratic factor is a multiple factor of q ( z ) . …
22: Bibliography C
  • L. Carlitz (1961b) The Staudt-Clausen theorem. Math. Mag. 34, pp. 131–146.
  • B. C. Carlson (1971) New proof of the addition theorem for Gegenbauer polynomials. SIAM J. Math. Anal. 2, pp. 347–351.
  • B. C. Carlson (1978) Short proofs of three theorems on elliptic integrals. SIAM J. Math. Anal. 9 (3), pp. 524–528.
  • F. Clarke (1989) The universal von Staudt theorems. Trans. Amer. Math. Soc. 315 (2), pp. 591–603.
  • G. Cornell, J. H. Silverman, and G. Stevens (Eds.) (1997) Modular Forms and Fermat’s Last Theorem. Springer-Verlag, New York.
  • 23: 4.21 Identities
    §4.21(iii) Multiples of the Argument
    De Moivre’s Theorem
    24: 2.1 Definitions and Elementary Properties
    For example, if f ( z ) is analytic for all sufficiently large | z | in a sector 𝐒 and f ( z ) = O ( z ν ) as z in 𝐒 , ν being real, then f ( z ) = O ( z ν 1 ) as z in any closed sector properly interior to 𝐒 and with the same vertex (Ritt’s theorem). This result also holds with both O ’s replaced by o ’s. … These include addition, subtraction, multiplication, and division. … Many properties enjoyed by Poincaré expansions (for example, multiplication) do not always carry over. …
    25: Errata
    We now include Markov’s Theorem. In regard to orthogonal polynomials on the unit circle, we now discuss monic polynomials, Verblunsky’s Theorem, and Szegő’s theorem. …
  • Equation (17.11.2)
    17.11.2 Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y ) = ( b , a x ; q ) ( c , x ; q ) n , r 0 ( a , b ; q ) n ( c / b , x ; q ) r b r y n ( q , c ; q ) n ( q ; q ) r ( a x ; q ) n + r

    The factor ( q ) r originally used in the denominator has been corrected to be ( q ; q ) r .

  • Equation (17.4.6)

    The multi-product notation ( q , c ; q ) m ( q , c ; q ) n in the denominator of the right-hand side was used.

  • Equations (17.2.22) and (17.2.23)
    17.2.22 ( q a 1 2 , q a 1 2 ; q ) n ( a 1 2 , a 1 2 ; q ) n = ( a q 2 ; q 2 ) n ( a ; q 2 ) n = 1 a q 2 n 1 a
    17.2.23 ( q a 1 k , q ω k a 1 k , , q ω k k 1 a 1 k ; q ) n ( a 1 k , ω k a 1 k , , ω k k 1 a 1 k ; q ) n = ( a q k ; q k ) n ( a ; q k ) n = 1 a q k n 1 a

    The numerators of the leftmost fractions were corrected to read ( q a 1 2 , q a 1 2 ; q ) n and ( q a 1 k , q ω k a 1 k , , q ω k k 1 a 1 k ; q ) n instead of ( q a 1 2 , a q 1 2 ; q ) n and ( a q 1 k , q ω k a 1 k , , q ω k k 1 a 1 k ; q ) n , respectively.

    Reported 2017-06-26 by Jason Zhao.

  • 26: 1.5 Calculus of Two or More Variables
    Implicit Function Theorem
    §1.5(iii) Taylor’s Theorem; Maxima and Minima
    §1.5(iv) Leibniz’s Theorem for Differentiation of Integrals
    §1.5(v) Multiple Integrals
    27: Bibliography K
  • M. K. Kerimov and S. L. Skorokhodov (1986) On multiple zeros of derivatives of Bessel’s cylindrical functions. Dokl. Akad. Nauk SSSR 288 (2), pp. 285–288 (Russian).
  • M. K. Kerimov and S. L. Skorokhodov (1987) On the calculation of the multiple complex roots of the derivatives of cylindrical Bessel functions. Zh. Vychisl. Mat. i Mat. Fiz. 27 (11), pp. 1628–1639, 1758.
  • M. K. Kerimov and S. L. Skorokhodov (1988) Multiple complex zeros of derivatives of the cylindrical Bessel functions. Dokl. Akad. Nauk SSSR 299 (3), pp. 614–618 (Russian).
  • B. J. King and A. L. Van Buren (1973) A general addition theorem for spheroidal wave functions. SIAM J. Math. Anal. 4 (1), pp. 149–160.
  • T. H. Koornwinder (1975a) A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13, pp. 145–159.
  • 28: 18.27 q -Hahn Class
    18.27.9 v x = ( a 1 x , c 1 x ; q ) ( x , b c 1 x ; q ) , 0 < a < q 1 , 0 < b < q 1 , c < 0 ,
    18.27.9_5 h n = ( c ) n a n + 1 1 a b q 2 n + 1 ( q ; q ) n q ( n + 2 2 ) ( a q , c q ; q ) n ( q , c 1 a q , a 1 c , a b q n + 1 ; q ) ( a q , c q , b q n + 1 , c 1 a b q n + 1 ; q ) ,
    18.27.12 v x = ( q x / c , q x / d ; q ) ( q α + 1 x / c , q β + 1 x / d ; q ) , α , β > 1 , c , d > 0 .
    18.27.14_1 h n = ( a q ) n 1 a b q 2 n + 1 ( q , b q ; q ) n ( a q ; q ) n ( a b q n + 1 ; q ) ( a q ; q ) .
    18.27.17_2 h 0 ( 2 ) = ( q , c q α + 1 , c 1 q α ; q ) ( q α + 1 , c , c 1 q ; q ) .
    29: Bibliography M
  • J. P. McClure and R. Wong (1987) Asymptotic expansion of a multiple integral. SIAM J. Math. Anal. 18 (6), pp. 1630–1637.
  • S. C. Milne (1985a) A q -analog of the F 4 5 ( 1 ) summation theorem for hypergeometric series well-poised in 𝑆𝑈 ( n ) . Adv. in Math. 57 (1), pp. 14–33.
  • S. C. Milne (1988) A q -analog of the Gauss summation theorem for hypergeometric series in U ( n ) . Adv. in Math. 72 (1), pp. 59–131.
  • S. C. Milne (1997) Balanced Θ 2 3 summation theorems for U ( n ) basic hypergeometric series. Adv. Math. 131 (1), pp. 93–187.
  • L. J. Mordell (1958) On the evaluation of some multiple series. J. London Math. Soc. (2) 33, pp. 368–371.