About the Project

multiplication theorems

AdvancedHelp

(0.002 seconds)

11—20 of 29 matching pages

11: 17.9 Further Transformations of Ο• r r + 1 Functions
β–Ί
17.9.3_5 Ο• 1 2 ⁑ ( a , b c ; q , z ) = ( c / a , c / b ; q ) ( c , c / ( a ⁒ b ) ; q ) ⁒ Ο• 2 3 ⁑ ( a , b , a ⁒ b ⁒ z / c q ⁒ a ⁒ b / c , 0 ; q , q ) + ( a , b , a ⁒ b ⁒ z / c ; q ) ( c , a ⁒ b / c , z ; q ) ⁒ Ο• 2 3 ⁑ ( c / a , c / b , z q ⁒ c / ( a ⁒ b ) , 0 ; q , q ) ,
β–Ί
17.9.6 Ο• 2 3 ⁑ ( a , b , c d , e ; q , d ⁒ e / ( a ⁒ b ⁒ c ) ) = ( e / a , d ⁒ e / ( b ⁒ c ) ; q ) ( e , d ⁒ e / ( a ⁒ b ⁒ c ) ; q ) ⁒ Ο• 2 3 ⁑ ( a , d / b , d / c d , d ⁒ e / ( b ⁒ c ) ; q , e / a ) ,
β–Ί
17.9.13 Ο• 2 3 ⁑ ( a , b , c d , e ; q , d ⁒ e a ⁒ b ⁒ c ) = ( e / b , e / c ; q ) ( e , e / ( b ⁒ c ) ; q ) ⁒ Ο• 2 3 ⁑ ( d / a , b , c d , b ⁒ c ⁒ q / e ; q , q ) + ( d / a , b , c , d ⁒ e / ( b ⁒ c ) ; q ) ( d , e , b ⁒ c / e , d ⁒ e / ( a ⁒ b ⁒ c ) ; q ) ⁒ Ο• 2 3 ⁑ ( e / b , e / c , d ⁒ e / ( a ⁒ b ⁒ c ) d ⁒ e / ( b ⁒ c ) , e ⁒ q / ( b ⁒ c ) ; q , q ) .
β–Ί
17.9.14 Ο• 3 4 ⁑ ( q n , a , b , c d , e , f ; q , q ) = ( e / a , f / a ; q ) n ( e , f ; q ) n ⁒ a n ⁒ Ο• 3 4 ⁑ ( q n , a , d / b , d / c d , a ⁒ q 1 n / e , a ⁒ q 1 n / f ; q , q ) = ( a , e ⁒ f / ( a ⁒ b ) , e ⁒ f / ( a ⁒ c ) ; q ) n ( e , f , e ⁒ f / ( a ⁒ b ⁒ c ) ; q ) n ⁒ Ο• 3 4 ⁑ ( q n , e / a , f / a , e ⁒ f / ( a ⁒ b ⁒ c ) e ⁒ f / ( a ⁒ b ) , e ⁒ f / ( a ⁒ c ) , q 1 n / a ; q , q ) .
β–Ί
Watson’s q -Analog of Whipple’s Theorem
12: 10.74 Methods of Computation
β–ΊTo ensure that no zeros are overlooked, standard tools are the phase principle and Rouché’s theorem; see §1.10(iv). … β–Ί
Multiple Zeros
13: 5.5 Functional Relations
β–Ί
§5.5(iii) Multiplication
β–Ί
Gauss’s Multiplication Formula
β–Ί
5.5.7 k = 1 n 1 Ξ“ ⁑ ( k n ) = ( 2 ⁒ Ο€ ) ( n 1 ) / 2 ⁒ n 1 / 2 .
β–Ί
§5.5(iv) Bohr–Mollerup Theorem
14: 1.9 Calculus of a Complex Variable
β–Ί
DeMoivre’s Theorem
β–Ί
Jordan Curve Theorem
β–Ί
Cauchy’s Theorem
β–Ί
Liouville’s Theorem
β–Ί
Dominated Convergence Theorem
15: 10.18 Modulus and Phase Functions
β–Ί
10.18.17 M Ξ½ 2 ⁑ ( x ) 2 Ο€ ⁒ x ⁒ ( 1 + 1 2 ⁒ ΞΌ 1 ( 2 ⁒ x ) 2 + 1 3 2 4 ⁒ ( ΞΌ 1 ) ⁒ ( ΞΌ 9 ) ( 2 ⁒ x ) 4 + 1 3 5 2 4 6 ⁒ ( ΞΌ 1 ) ⁒ ( ΞΌ 9 ) ⁒ ( ΞΌ 25 ) ( 2 ⁒ x ) 6 + β‹― ) ,
β–Ί
10.18.18 ΞΈ Ξ½ ⁑ ( x ) x ( 1 2 ⁒ Ξ½ + 1 4 ) ⁒ Ο€ + ΞΌ 1 2 ⁒ ( 4 ⁒ x ) + ( ΞΌ 1 ) ⁒ ( ΞΌ 25 ) 6 ⁒ ( 4 ⁒ x ) 3 + ( ΞΌ 1 ) ⁒ ( ΞΌ 2 114 ⁒ ΞΌ + 1073 ) 5 ⁒ ( 4 ⁒ x ) 5 + ( ΞΌ 1 ) ⁒ ( 5 ⁒ ΞΌ 3 1535 ⁒ ΞΌ 2 + 54703 ⁒ ΞΌ 3 75733 ) 14 ⁒ ( 4 ⁒ x ) 7 + β‹― .
16: Bibliography
β–Ί
  • W. A. Al-Salam (1990) Characterization theorems for orthogonal polynomials. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 1–24.
  • β–Ί
  • H. Alzer and S. Qiu (2004) Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172 (2), pp. 289–312.
  • β–Ί
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • β–Ί
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • β–Ί
  • T. M. Apostol (2000) A Centennial History of the Prime Number Theorem. In Number Theory, Trends Math., pp. 1–14.
  • 17: 18.36 Miscellaneous Polynomials
    β–ΊThese are OP’s on the interval ( 1 , 1 ) with respect to an orthogonality measure obtained by adding constant multiples of “Dirac delta weights” at 1 and 1 to the weight function for the Jacobi polynomials. … β–Ί
    §18.36(iii) Multiple Orthogonal Polynomials
    β–ΊOrthogonality of the the classical OP’s with respect to a positive weight function, as in Table 18.3.1 requires, via Favard’s theorem, A n ⁒ A n 1 ⁒ C n > 0 for n 1 as per (18.2.9_5). … β–ΊIn §18.39(i) it is seen that the functions, w ⁑ ( x ) ⁒ H ^ n + 3 ⁑ ( x ) , are solutions of a Schrödinger equation with a rational potential energy; and, in spite of first appearances, the Sturm oscillation theorem, Simon (2005c, Theorem 3.3, p. 35), is satisfied. …
    18: Bibliography D
    β–Ί
  • H. Davenport (2000) Multiplicative Number Theory. 3rd edition, Graduate Texts in Mathematics, Vol. 74, Springer-Verlag, New York.
  • β–Ί
  • S. C. Dhar (1940) Note on the addition theorem of parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 4, pp. 29–30.
  • β–Ί
  • K. Dilcher (2008) On multiple zeros of Bernoulli polynomials. Acta Arith. 134 (2), pp. 149–155.
  • β–Ί
  • H. Ding, K. I. Gross, and D. St. P. Richards (1996) Ramanujan’s master theorem for symmetric cones. Pacific J. Math. 175 (2), pp. 447–490.
  • β–Ί
  • J. Dougall (1907) On Vandermonde’s theorem, and some more general expansions. Proc. Edinburgh Math. Soc. 25, pp. 114–132.
  • 19: 27.8 Dirichlet Characters
    β–ΊIf k ( > 1 ) is a given integer, then a function Ο‡ ⁑ ( n ) is called a Dirichlet character (mod k ) if it is completely multiplicative, periodic with period k , and vanishes when ( n , k ) > 1 . … β–ΊFor any character Ο‡ ( mod k ) , Ο‡ ⁑ ( n ) 0 if and only if ( n , k ) = 1 , in which case the Euler–Fermat theorem (27.2.8) implies ( Ο‡ ⁑ ( n ) ) Ο• ⁑ ( k ) = 1 . …
    20: 22.8 Addition Theorems
    §22.8 Addition Theorems
    β–ΊIf sums/differences of the z j ’s are rational multiples of K ⁑ ( k ) , then further relations follow. …