About the Project

modulus and phase

AdvancedHelp

(0.001 seconds)

31—40 of 134 matching pages

31: 13.4 Integral Representations
β–Ί
13.4.12 𝐌 ⁑ ( a , c , z ) = Ξ“ ⁑ ( b ) 2 ⁒ Ο€ ⁒ i ⁒ z 1 b ⁒ ( 0 + , 1 + ) e z ⁒ t ⁒ t b ⁒ 𝐅 1 2 ⁑ ( a , b ; c ; 1 / t ) ⁒ d t , b 0 , 1 , 2 , , | ph ⁑ z | < 1 2 ⁒ Ο€ .
32: 7.12 Asymptotic Expansions
β–ΊWhen | ph ⁑ z | 1 4 ⁒ Ο€ the remainder terms are bounded in magnitude by the first neglected terms, and have the same sign as these terms when ph ⁑ z = 0 . When 1 4 ⁒ Ο€ | ph ⁑ z | < 1 2 ⁒ Ο€ the remainder terms are bounded in magnitude by csc ⁑ ( 2 ⁒ | ph ⁑ z | ) times the first neglected terms. … β–ΊWhen | ph ⁑ z | 1 8 ⁒ Ο€ , R n ( f ) ⁑ ( z ) and R n ( g ) ⁑ ( z ) are bounded in magnitude by the first neglected terms in (7.12.2) and (7.12.3), respectively, and have the same signs as these terms when ph ⁑ z = 0 . They are bounded by | csc ⁑ ( 4 ⁒ ph ⁑ z ) | times the first neglected terms when 1 8 ⁒ Ο€ | ph ⁑ z | < 1 4 ⁒ Ο€ . β–ΊFor other phase ranges use (7.4.7) and (7.4.8). …
33: 5.20 Physical Applications
β–Ί
Rutherford Scattering
β–ΊIn nonrelativistic quantum mechanics, collisions between two charged particles are described with the aid of the Coulomb phase shift ph ⁑ Ξ“ ⁑ ( β„“ + 1 + i ⁒ Ξ· ) ; see (33.2.10) and Clark (1979). … β–Ί
5.20.2 P ⁑ ( x 1 , , x n ) = C ⁒ exp ⁑ ( W / ( k ⁒ T ) ) ,
β–ΊThen the partition function (with Ξ² = 1 / ( k ⁒ T ) ) is given by β–Ί
5.20.3 ψ n ⁑ ( Ξ² ) = ℝ n e Ξ² ⁒ W ⁒ d x = ( 2 ⁒ Ο€ ) n / 2 ⁒ Ξ² ( n / 2 ) ( Ξ² ⁒ n ⁒ ( n 1 ) / 4 ) ⁒ ( Ξ“ ⁑ ( 1 + 1 2 ⁒ Ξ² ) ) n ⁒ j = 1 n Ξ“ ⁑ ( 1 + 1 2 ⁒ j ⁒ Ξ² ) .
34: 15.8 Transformations of Variable
β–Ί
15.8.14 F ⁑ ( a , b 2 ⁒ b ; z ) = ( 1 z ) a / 2 ⁒ F ⁑ ( 1 2 ⁒ a , b 1 2 ⁒ a b + 1 2 ; z 2 4 ⁒ z 4 ) , | ph ⁑ ( 1 z ) | < Ο€ .
β–Ίprovided that z lies in the intersection of the open disks | z 1 4 ± 1 4 ⁒ 3 ⁒ i | < 1 2 ⁒ 3 , or equivalently, | ph ⁑ ( ( 1 z ) / ( 1 + 2 ⁒ z ) ) | < Ο€ / 3 . …
35: 15.9 Relations to Other Functions
β–Ί
15.9.17 𝐅 ⁑ ( a , a + 1 2 c ; z ) = 2 c 1 ⁒ z ( 1 c ) / 2 ⁒ ( 1 z ) a + ( ( c 1 ) / 2 ) ⁒ P 2 ⁒ a c 1 c ⁑ ( 1 1 z ) , | ph ⁑ z | < Ο€ and | ph ⁑ ( 1 z ) | < Ο€ .
β–Ί
15.9.18 𝐅 ⁑ ( a , b a + b + 1 2 ; z ) = 2 a + b ( 1 / 2 ) ⁒ ( z ) ( a b + ( 1 / 2 ) ) / 2 ⁒ P a b ( 1 / 2 ) a b + ( 1 / 2 ) ⁑ ( 1 z ) , | ph ⁑ ( z ) | < Ο€ .
β–Ί
15.9.19 𝐅 ⁑ ( a , b a b + 1 ; z ) = z ( b a ) / 2 ⁒ ( 1 z ) b ⁒ P b b a ⁑ ( 1 + z 1 z ) , | ph ⁑ z | < Ο€ and | ph ⁑ ( 1 z ) | < Ο€ .
β–Ί
15.9.20 𝐅 ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = ( z ⁒ ( 1 z ) ) ( 1 a b ) / 4 ⁒ P ( a b 1 ) / 2 ( 1 a b ) / 2 ⁑ ( 1 2 ⁒ z ) , | ph ⁑ ( z ) | < Ο€ .
β–Ί
36: 22.5 Special Values
β–ΊFor example, at z = K ⁑ + i ⁒ K ⁑ , sn ⁑ ( z , k ) = 1 / k , d sn ⁑ ( z , k ) / d z = 0 . (The modulus k is suppressed throughout the table.) … β–ΊFor example, sn ⁑ ( 1 2 ⁒ K ⁑ , k ) = ( 1 + k ) 1 / 2 . … β–Ί
§22.5(ii) Limiting Values of k
β–ΊFor values of K ⁑ , K ⁑ when k 2 = 1 2 (lemniscatic case) see §23.5(iii), and for k 2 = e i ⁒ Ο€ / 3 (equianharmonic case) see §23.5(v). …
37: 4.9 Continued Fractions
β–Ί
4.9.1 ln ⁑ ( 1 + z ) = z 1 + z 2 + z 3 + 4 ⁒ z 4 + 4 ⁒ z 5 + 9 ⁒ z 6 + 9 ⁒ z 7 + ⁒ β‹― , | ph ⁑ ( 1 + z ) | < Ο€ .
β–Ί
= 1 + z 1 ( z / 2 ) + z 2 / ( 4 3 ) 1 + z 2 / ( 4 15 ) 1 + z 2 / ( 4 35 ) 1 + ⁒ β‹― ⁒ z 2 / ( 4 ⁒ ( 4 ⁒ n 2 1 ) ) 1 + ⁒ β‹―
38: 4.45 Methods of Computation
β–ΊSuppose first 1 / 10 x 10 . … β–ΊWe first compute ΞΎ = x / Ο€ , followed by … β–ΊFrom (4.24.15) with u = v = ( ( 1 + x 2 ) 1 / 2 1 ) / x , we have … β–ΊFor example, arcsin ⁑ x = arctan ⁑ ( x ⁒ ( 1 x 2 ) 1 / 2 ) . … β–ΊSee §1.9(i) for the precise relationship of ph ⁑ z to the arctangent function. …
39: 2.11 Remainder Terms; Stokes Phenomenon
β–ΊIn β„‚ both the modulus and phase of the asymptotic variable z need to be taken into account. …
40: 9.13 Generalized Airy Functions
β–Ί
9.13.9 A n ⁑ ( z ) = p / Ο€ ⁒ sin ⁑ ( p ⁒ Ο€ ) ⁒ z n / 4 ⁒ e ΞΆ ⁒ ( 1 + O ⁑ ( ΞΆ 1 ) ) , | ph ⁑ z | 3 ⁒ p ⁒ Ο€ Ξ΄ ,
β–Ί
9.13.10 A n ⁑ ( z ) = { 2 ⁒ p / Ο€ ⁒ cos ⁑ ( 1 2 ⁒ p ⁒ Ο€ ) ⁒ z n / 4 ⁒ ( cos ⁑ ( ΞΆ 1 4 ⁒ Ο€ ) + e | ⁑ ΞΆ | ⁒ O ⁑ ( ΞΆ 1 ) ) , | ph ⁑ z | 2 ⁒ p ⁒ Ο€ Ξ΄ n  odd , p / Ο€ ⁒ z n / 4 ⁒ e ΞΆ ⁒ ( 1 + O ⁑ ( ΞΆ 1 ) ) , | ph ⁑ z | p ⁒ Ο€ Ξ΄ n  even ,
β–Ί
9.13.11 B n ⁑ ( z ) = Ο€ 1 / 2 ⁒ z n / 4 ⁒ e ΞΆ ⁒ ( 1 + O ⁑ ( ΞΆ 1 ) ) , | ph ⁑ z | p ⁒ Ο€ Ξ΄ ,
β–Ί
9.13.12 B n ⁑ ( z ) = { ( 2 / Ο€ ) ⁒ sin ⁑ ( 1 2 ⁒ p ⁒ Ο€ ) ⁒ z n / 4 ⁒ ( sin ⁑ ( ΞΆ 1 4 ⁒ Ο€ ) + e | ⁑ ΞΆ | ⁒ O ⁑ ( ΞΆ 1 ) ) , | ph ⁑ z | 2 ⁒ p ⁒ Ο€ Ξ΄ , n ⁒  odd , ( 1 / Ο€ ) ⁒ sin ⁑ ( p ⁒ Ο€ ) ⁒ z n / 4 ⁒ e ΞΆ ⁒ ( 1 + O ⁑ ( ΞΆ 1 ) ) , | ph ⁑ z | 3 ⁒ p ⁒ Ο€ Ξ΄ , n ⁒  even .
β–ΊThe function on the right-hand side is recessive in the sector ( 2 ⁒ j 1 ) ⁒ Ο€ / m ph ⁑ z ( 2 ⁒ j + 1 ) ⁒ Ο€ / m , and is therefore an essential member of any numerically satisfactory pair of solutions in this region. …