About the Project

maximum

AdvancedHelp

(0.001 seconds)

31—40 of 75 matching pages

31: Bibliography C
  • J. B. Campbell (1984) Determination of ν -zeros of Hankel functions. Comput. Phys. Comm. 32 (3), pp. 333–339.
  • D. S. Clemm (1969) Algorithm 352: Characteristic values and associated solutions of Mathieu’s differential equation. Comm. ACM 12 (7), pp. 399–407.
  • L. D. Cloutman (1989) Numerical evaluation of the Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 71, pp. 677–699.
  • W. J. Cody (1983) Algorithm 597: Sequence of modified Bessel functions of the first kind. ACM Trans. Math. Software 9 (2), pp. 242–245.
  • S. W. Cunningham (1969) Algorithm AS 24: From normal integral to deviate. Appl. Statist. 18 (3), pp. 290–293.
  • 32: Bibliography H
  • J. R. Herndon (1961a) Algorithm 55: Complete elliptic integral of the first kind. Comm. ACM 4 (4), pp. 180.
  • J. R. Herndon (1961b) Algorithm 56: Complete elliptic integral of the second kind. Comm. ACM 4 (4), pp. 180–181.
  • G. W. Hill (1970) Algorithm 395: Student’s t-distribution. Comm. ACM 13 (10), pp. 617–619.
  • I. D. Hill (1973) Algorithm AS66: The normal integral. Appl. Statist. 22 (3), pp. 424–427.
  • 33: Bibliography S
  • J. Segura and A. Gil (1998) Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments. Comput. Phys. Comm. 115 (1), pp. 69–86.
  • W. V. Snyder (1993) Algorithm 723: Fresnel integrals. ACM Trans. Math. Software 19 (4), pp. 452–456.
  • B. Sommer and J. G. Zabolitzky (1979) On numerical Bessel transformation. Comput. Phys. Comm. 16 (3), pp. 383–387.
  • I. A. Stegun and R. Zucker (1970) Automatic computing methods for special functions. I. J. Res. Nat. Bur. Standards Sect. B 74B, pp. 211–224.
  • A. J. Stone and C. P. Wood (1980) Root-rational-fraction package for exact calculation of vector-coupling coefficients. Comput. Phys. Comm. 21 (2), pp. 195–205.
  • 34: 28.22 Connection Formulas
    Here me ν ( 0 , h 2 ) ( 0 ) is given by (28.14.1) with z = 0 , and M ν ( 1 ) ( 0 , h ) is given by (28.24.1) with j = 1 , z = 0 , and n chosen so that | c 2 n ν ( h 2 ) | = max ( | c 2 ν ( h 2 ) | ) , where the maximum is taken over all integers . …
    35: Bibliography B
  • A. Bañuelos, R. A. Depine, and R. C. Mancini (1981) A program for computing the Fermi-Dirac functions. Comput. Phys. Comm. 21 (3), pp. 315–322.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • A. R. Barnett (1982) COULFG: Coulomb and Bessel functions and their derivatives, for real arguments, by Steed’s method. Comput. Phys. Comm. 27, pp. 147–166.
  • R. F. Boisvert and B. V. Saunders (1992) Portable vectorized software for Bessel function evaluation. ACM Trans. Math. Software 18 (4), pp. 456–469.
  • W. J. Braithwaite (1973) Associated Legendre polynomials, ordinary and modified spherical harmonics. Comput. Phys. Comm. 5 (5), pp. 390–394.
  • 36: Bibliography N
  • M. Nardin, W. F. Perger, and A. Bhalla (1992a) Algorithm 707: CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes. ACM Trans. Math. Software 18 (3), pp. 345–349.
  • M. Nardin, W. F. Perger, and A. Bhalla (1992b) Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes. J. Comput. Appl. Math. 39 (2), pp. 193–200.
  • 37: 10.17 Asymptotic Expansions for Large Argument
    Then the remainder associated with the sum k = 0 1 ( 1 ) k a 2 k ( ν ) z 2 k does not exceed the first neglected term in absolute value and has the same sign provided that max ( 1 2 ν 1 4 , 1 ) . Similarly for k = 0 1 ( 1 ) k a 2 k + 1 ( ν ) z 2 k 1 , provided that max ( 1 2 ν 3 4 , 1 ) . … If these expansions are terminated when k = 1 , then the remainder term is bounded in absolute value by the first neglected term, provided that max ( ν 1 2 , 1 ) . …
    38: 13.23 Integrals
    13.23.11 0 e 1 2 t t 1 2 ( ν 1 ) μ W κ , μ ( t ) J ν ( 2 x t ) d t = Γ ( ν 2 μ + 1 ) Γ ( 1 2 + μ κ ) e 1 2 x x 1 2 ( μ κ 3 2 ) W 1 2 ( κ + 3 μ ν 1 2 ) , 1 2 ( κ μ + ν + 1 2 ) ( x ) , x > 0 , max ( 2 μ 1 , 1 ) < ν < 2 μ κ + 3 2 ,
    13.23.12 0 e 1 2 t t 1 2 ( ν 1 ) μ W κ , μ ( t ) J ν ( 2 x t ) d t = Γ ( ν 2 μ + 1 ) Γ ( 3 2 μ κ + ν ) e 1 2 x x 1 2 ( μ + κ 3 2 ) M 1 2 ( κ 3 μ + ν + 1 2 ) , 1 2 ( ν μ κ + 1 2 ) ( x ) , x > 0 , max ( 2 μ 1 , 1 ) < ν .
    Then for μ in the half-plane μ μ 1 > max ( ρ 0 , κ 1 2 )
    39: 1.2 Elementary Algebra
    1.2.23 lim r M ( r ) = max ( a 1 , a 2 , , a n ) ,
    1.2.48 𝐯 = max ( | v 1 | , | v 2 | , , | v n | ) .
    1.2.67 𝐀 = max 𝐱 𝐄 n { 𝟎 } 𝐀 𝐱 𝐱 = max 𝐱 = 1 𝐀 𝐱 .
    40: 1.5 Calculus of Two or More Variables
    f ( x , y ) has a local minimum (maximum) at ( a , b ) if … as max ( ( x j + 1 x j ) + ( y k + 1 y k ) ) 0 . …