About the Project

logarithm function

AdvancedHelp

(0.013 seconds)

21—30 of 399 matching pages

21: 27.11 Asymptotic Formulas: Partial Sums
27.11.2 n x d ( n ) = x ln x + ( 2 γ 1 ) x + O ( x ) ,
27.11.3 n x d ( n ) n = 1 2 ( ln x ) 2 + 2 γ ln x + O ( 1 ) ,
27.11.10 p x ln p p = ln x + O ( 1 ) .
27.11.12 n x μ ( n ) = O ( x e C ln x ) , x ,
27.11.15 lim x n x μ ( n ) ln n n = 1 .
22: 4.37 Inverse Hyperbolic Functions
§4.37(iv) Logarithmic Forms
4.37.21 arccosh z = 2 ln ( ( z + 1 2 ) 1 / 2 + ( z 1 2 ) 1 / 2 ) , z ( , 1 ) ;
For the corresponding results for arccsch z , arcsech z , and arccoth z , use (4.37.7)–(4.37.9); compare §4.23(iv). …
23: 25.8 Sums
25.8.4 k = 1 ( 1 ) k k ( ζ ( n k ) 1 ) = ln ( j = 0 n 1 Γ ( 2 e ( 2 j + 1 ) π i / n ) ) , n = 2 , 3 , 4 , .
25.8.7 k = 2 ζ ( k ) k z k = γ z + ln Γ ( 1 z ) , | z | < 1 .
25.8.8 k = 1 ζ ( 2 k ) k z 2 k = ln ( π z sin ( π z ) ) , | z | < 1 .
25.8.9 k = 1 ζ ( 2 k ) ( 2 k + 1 ) 2 2 k = 1 2 1 2 ln 2 .
24: 22.14 Integrals
22.14.1 sn ( x , k ) d x = k 1 ln ( dn ( x , k ) k cn ( x , k ) ) ,
25: 6.14 Integrals
6.14.1 0 e a t E 1 ( t ) d t = 1 a ln ( 1 + a ) , a > 1 ,
6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
6.14.3 0 e a t si ( t ) d t = 1 a arctan a , a > 0 .
6.14.4 0 E 1 2 ( t ) d t = 2 ln 2 ,
6.14.7 0 Ci ( t ) si ( t ) d t = ln 2 .
26: 4.9 Continued Fractions
§4.9(i) Logarithms
4.9.1 ln ( 1 + z ) = z 1 + z 2 + z 3 + 4 z 4 + 4 z 5 + 9 z 6 + 9 z 7 + , | ph ( 1 + z ) | < π .
4.9.2 ln ( 1 + z 1 z ) = 2 z 1 z 2 3 4 z 2 5 9 z 2 7 16 z 2 9 ,
27: 2.2 Transcendental Equations
2.2.3 t 2 ln t = y .
2.2.5 t 2 = y + ln t = y + 1 2 ln y + o ( 1 ) ,
2.2.6 t = y 1 2 ( 1 + 1 4 y 1 ln y + o ( y 1 ) ) , y .
28: 4.23 Inverse Trigonometric Functions
§4.23(iv) Logarithmic Forms
4.23.24 arccos x = i ln ( ( x 2 1 ) 1 / 2 + x ) , x [ 1 , ) ,
Care needs to be taken on the cuts, for example, if 0 < x < then 1 / ( x + i 0 ) = ( 1 / x ) i 0 . …
4.23.36 arctan z = 1 2 arctan ( 2 x 1 x 2 y 2 ) + 1 4 i ln ( x 2 + ( y + 1 ) 2 x 2 + ( y 1 ) 2 ) ,
29: 4.45 Methods of Computation
Logarithms
The function ln x can always be computed from its ascending power series after preliminary scaling. …
4.45.2 ln x = 2 m ln ( 1 + y ) .
4.45.3 ln x = ln ξ + m ln 10 .
The trigonometric functions may be computed from the definitions (4.14.1)–(4.14.7), and their inverses from the logarithmic forms in §4.23(iv), followed by (4.23.7)–(4.23.9). …
30: 5.9 Integral Representations
Binet’s Formula
5.9.10 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 2 0 arctan ( t / z ) e 2 π t 1 d t ,
5.9.10_1 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) z π 0 ln ( 1 e 2 π t ) t 2 + z 2 d t ,
5.9.10_2 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 0 e z t ( 1 e t 1 1 t + 1 2 ) d t t ,
5.9.11 Ln Γ ( z + 1 ) = γ z 1 2 π i c i c + i π z s s sin ( π s ) ζ ( s ) d s ,