About the Project

logarithm

AdvancedHelp

(0.001 seconds)

31—40 of 407 matching pages

31: 5.9 Integral Representations
where Φ ( t ) = 1 t cot t + ln ( t sin t ) . …
Binet’s Formula
5.9.10 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 2 0 arctan ( t / z ) e 2 π t 1 d t ,
5.9.10_1 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) z π 0 ln ( 1 e 2 π t ) t 2 + z 2 d t ,
5.9.10_2 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 0 e z t ( 1 e t 1 1 t + 1 2 ) d t t ,
32: 4.9 Continued Fractions
§4.9(i) Logarithms
4.9.1 ln ( 1 + z ) = z 1 + z 2 + z 3 + 4 z 4 + 4 z 5 + 9 z 6 + 9 z 7 + , | ph ( 1 + z ) | < π .
4.9.2 ln ( 1 + z 1 z ) = 2 z 1 z 2 3 4 z 2 5 9 z 2 7 16 z 2 9 ,
For other continued fractions involving logarithms see Lorentzen and Waadeland (1992, pp. 566–568). …
4.9.4 e z e n 1 ( z ) = z n n ! n ! z ( n + 1 ) + z ( n + 2 ) ( n + 1 ) z ( n + 3 ) + 2 z ( n + 4 ) ( n + 2 ) z ( n + 5 ) + 3 z ( n + 6 ) ,
33: 6.4 Analytic Continuation
6.4.1 E 1 ( z ) = Ein ( z ) Ln z γ ;
6.4.2 E 1 ( z e 2 m π i ) = E 1 ( z ) 2 m π i , m ,
6.4.4 Ci ( z e ± π i ) = ± π i + Ci ( z ) ,
6.4.5 Chi ( z e ± π i ) = ± π i + Chi ( z ) ,
34: 5.22 Tables
Abramowitz and Stegun (1964, Chapter 6) tabulates Γ ( x ) , ln Γ ( x ) , ψ ( x ) , and ψ ( x ) for x = 1 ( .005 ) 2 to 10D; ψ ′′ ( x ) and ψ ( 3 ) ( x ) for x = 1 ( .01 ) 2 to 10D; Γ ( n ) , 1 / Γ ( n ) , Γ ( n + 1 2 ) , ψ ( n ) , log 10 Γ ( n ) , log 10 Γ ( n + 1 3 ) , log 10 Γ ( n + 1 2 ) , and log 10 Γ ( n + 2 3 ) for n = 1 ( 1 ) 101 to 8–11S; Γ ( n + 1 ) for n = 100 ( 100 ) 1000 to 20S. Zhang and Jin (1996, pp. 67–69 and 72) tabulates Γ ( x ) , 1 / Γ ( x ) , Γ ( x ) , ln Γ ( x ) , ψ ( x ) , ψ ( x ) , ψ ( x ) , and ψ ( x ) for x = 0 ( .1 ) 5 to 8D or 8S; Γ ( n + 1 ) for n = 0 ( 1 ) 100 ( 10 ) 250 ( 50 ) 500 ( 100 ) 3000 to 51S. … Abramov (1960) tabulates ln Γ ( x + i y ) for x = 1 ( .01 ) 2 , y = 0 ( .01 ) 4 to 6D. Abramowitz and Stegun (1964, Chapter 6) tabulates ln Γ ( x + i y ) for x = 1 ( .1 ) 2 , y = 0 ( .1 ) 10 to 12D. …Zhang and Jin (1996, pp. 70, 71, and 73) tabulates the real and imaginary parts of Γ ( x + i y ) , ln Γ ( x + i y ) , and ψ ( x + i y ) for x = 0.5 , 1 , 5 , 10 , y = 0 ( .5 ) 10 to 8S.
35: 4.46 Tables
§4.46 Tables
36: 5.3 Graphics
See accompanying text
Figure 5.3.2: ln Γ ( x ) . … Magnify
37: 4.40 Integrals
4.40.4 csch x d x = ln ( tanh ( 1 2 x ) ) , 0 < x < .
4.40.6 coth x d x = ln ( sinh x ) , 0 < x < .
4.40.10 0 tanh ( a x ) tanh ( b x ) x d x = ln ( a b ) , a > 0 , b > 0 .
4.40.13 arctanh x d x = x arctanh x + 1 2 ln ( 1 x 2 ) , 1 < x < 1 ,
38: 25.8 Sums
25.8.4 k = 1 ( 1 ) k k ( ζ ( n k ) 1 ) = ln ( j = 0 n 1 Γ ( 2 e ( 2 j + 1 ) π i / n ) ) , n = 2 , 3 , 4 , .
25.8.7 k = 2 ζ ( k ) k z k = γ z + ln Γ ( 1 z ) , | z | < 1 .
25.8.8 k = 1 ζ ( 2 k ) k z 2 k = ln ( π z sin ( π z ) ) , | z | < 1 .
25.8.9 k = 1 ζ ( 2 k ) ( 2 k + 1 ) 2 2 k = 1 2 1 2 ln 2 .
39: 4.37 Inverse Hyperbolic Functions
Compare the principal value of the logarithm4.2(i)). …
§4.37(iv) Logarithmic Forms
4.37.20 arccosh ( i y ) = ± 1 2 π i + ln ( ( y 2 + 1 ) 1 / 2 ± y ) , y 0 .
For the corresponding results for arccsch z , arcsech z , and arccoth z , use (4.37.7)–(4.37.9); compare §4.23(iv). …
40: 7.17 Inverse Error Functions
7.17.5 u = 2 / ln ( π x 2 ln ( 1 / x ) ) ,
7.17.6 v = ln ( ln ( 1 / x ) ) 2 + ln π .