About the Project

limiting forms as k→0 or k→1

AdvancedHelp

(0.042 seconds)

1—10 of 448 matching pages

1: 22.5 Special Values
For example, at z = K + i K , sn ( z , k ) = 1 / k , d sn ( z , k ) / d z = 0 . … For example, sn ( 1 2 K , k ) = ( 1 + k ) 1 / 2 . …
§22.5(ii) Limiting Values of k
If k 0 + , then K π / 2 and K ; if k 1 , then K and K π / 2 . …
2: 22.7 Landen Transformations
22.7.1 k 1 = 1 k 1 + k ,
22.7.2 sn ( z , k ) = ( 1 + k 1 ) sn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.4 dn ( z , k ) = dn 2 ( z / ( 1 + k 1 ) , k 1 ) ( 1 k 1 ) 1 + k 1 dn 2 ( z / ( 1 + k 1 ) , k 1 ) .
k 2 = 1 k 1 + k ,
3: 24.20 Tables
Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. …
4: 22.17 Moduli Outside the Interval [0,1]
k 1 = k 1 + k 2 ,
k 1 k 1 = k 1 + k 2 ,
22.17.7 cn ( z , i k ) = cd ( z / k 1 , k 1 ) ,
22.17.8 dn ( z , i k ) = nd ( z / k 1 , k 1 ) .
In particular, the Landen transformations in §§22.7(i) and 22.7(ii) are valid for all complex values of k , irrespective of which values of k and k = 1 k 2 are chosen—as long as they are used consistently. …
5: 3.10 Continued Fractions
e j k = e j 1 k + 1 + q j k + 1 q j k , j 1 , k 0 ,
q j + 1 k = q j k + 1 e j k + 1 / e j k , j 1 , k 0 .
u k = b k + a k + 1 u k + 1 , k = n 1 , n 2 , , 0 .
t k = ρ k t k 1 ,
ρ k = a k ( 1 + ρ k 1 ) 1 a k ( 1 + ρ k 1 ) , k = 1 , 2 , 3 , .
6: 3.9 Acceleration of Convergence
If S = k = 0 ( 1 ) k a k is a convergent series, then
3.9.2 S = k = 0 ( 1 ) k 2 k 1 Δ k a 0 ,
3.9.3 Δ k a 0 = Δ k 1 a 1 Δ k 1 a 0 , k = 1 , 2 , .
Aitken’s Δ 2 -process is the case k = 1 . …
3.9.14 c j , k , n = ( n + j + 1 ) k 1 ( n + k + 1 ) k 1 .
7: 24.6 Explicit Formulas
24.6.1 B 2 n = k = 2 2 n + 1 ( 1 ) k 1 k ( 2 n + 1 k ) j = 1 k 1 j 2 n ,
24.6.3 B 2 n = k = 1 n ( k 1 ) ! k ! ( 2 k + 1 ) ! j = 1 k ( 1 ) j 1 ( 2 k k + j ) j 2 n .
24.6.4 E 2 n = k = 1 n 1 2 k 1 j = 1 k ( 1 ) j ( 2 k k j ) j 2 n ,
24.6.6 E 2 n = k = 1 2 n ( 1 ) k 2 k 1 ( 2 n + 1 k + 1 ) j = 0 1 2 k 1 2 ( k j ) ( k 2 j ) 2 n .
24.6.9 B n = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) j n ,
8: 30.8 Expansions in Series of Ferrers Functions
where 𝖯 n + 2 k m ( x ) is the Ferrers function of the first kind (§14.3(i)), R = 1 2 ( n m ) , and the coefficients a n , k m ( γ 2 ) are given by …Then the set of coefficients a n , k m ( γ 2 ) , k = R , R + 1 , R + 2 , is the solution of the difference equation … For k = N , N + 1 , , R 1 they are determined from (30.8.4) by forward recursion using a n , N 1 m ( γ 2 ) = 0 . The set of coefficients a n , k m ( γ 2 ) , k = N 1 , N 2 , , is the recessive solution of (30.8.4) as k that is normalized by …It should be noted that if the forward recursion (30.8.4) beginning with f N 1 = 0 , f N = 1 leads to f R = 0 , then a n , k m ( γ 2 ) is undefined for n < R and 𝖰𝗌 n m ( x , γ 2 ) does not exist. …
9: 13.2 Definitions and Basic Properties
13.2.27 k = 1 n n ! ( k 1 ) ! ( n k ) ! ( 1 a ) k z k k = 0 ( a ) k ( n + 1 ) k k ! z k ( ln z + ψ ( a + k ) ψ ( 1 + k ) ψ ( n + k + 1 ) ) ,
13.2.28 k = 1 n n ! ( k 1 ) ! ( n k ) ! ( 1 a ) k z k k = 0 a ( a ) k ( n + 1 ) k k ! z k ( ln z + ψ ( 1 a k ) ψ ( 1 + k ) ψ ( n + k + 1 ) ) + ( 1 ) 1 a ( a ) ! k = 1 a ( k 1 + a ) ! ( n + 1 ) k k ! z k ,
13.2.30 k = 1 n + 1 ( n + 1 ) ! ( k 1 ) ! ( n k + 1 ) ! ( a n ) k z n k + 1 k = 0 ( a + n + 1 ) k ( n + 2 ) k k ! z n + k + 1 ( ln z + ψ ( a + n + k + 1 ) ψ ( 1 + k ) ψ ( n + k + 2 ) ) ,
13.2.31 k = 1 n + 1 ( n + 1 ) ! ( k 1 ) ! ( n k + 1 ) ! ( a n ) k z n k + 1 k = 0 a n 1 ( a + n + 1 ) k ( n + 2 ) k k ! z n + k + 1 ( ln z + ψ ( a n k ) ψ ( 1 + k ) ψ ( n + k + 2 ) ) + ( 1 ) n a ( a n 1 ) ! k = a n ( k + a + n ) ! ( n + 2 ) k k ! z n + k + 1 ,
13.2.32 k = a + n + 1 n + 1 ( k 1 ) ! ( n k + 1 ) ! ( k a n 1 ) ! z n k + 1 ,
10: 33.11 Asymptotic Expansions for Large ρ
Here f 0 = 1 , g 0 = 0 , f ^ 0 = 0 , g ^ 0 = 1 ( η / ρ ) , and for k = 0 , 1 , 2 , , …
f ^ k + 1 = λ k f ^ k μ k g ^ k ( f k + 1 / ρ ) ,
g ^ k + 1 = λ k g ^ k + μ k f ^ k ( g k + 1 / ρ ) ,
λ k = ( 2 k + 1 ) η ( 2 k + 2 ) ρ ,
μ k = ( + 1 ) k ( k + 1 ) + η 2 ( 2 k + 2 ) ρ .