About the Project

limit%20forms%20as%20%E2%84%91%CF%84%E2%86%920%2B

AdvancedHelp

(0.010 seconds)

21—30 of 837 matching pages

21: 23 Weierstrass Elliptic and Modular
Functions
22: Bibliography C
  • F. Calogero (1978) Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial L n α ( x )  as the index α  and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Lett. Nuovo Cimento (2) 23 (3), pp. 101–102.
  • P. L. Chebyshev (1851) Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donnée. Mem. Ac. Sc. St. Pétersbourg 6, pp. 141–157.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 23: 29.5 Special Cases and Limiting Forms
    §29.5 Special Cases and Limiting Forms
    29.5.4 lim k 1 a ν m ( k 2 ) = lim k 1 b ν m + 1 ( k 2 ) = ν ( ν + 1 ) μ 2 ,
    If k 0 + and ν in such a way that k 2 ν ( ν + 1 ) = 4 θ (a positive constant), then
    lim 𝐸𝑐 ν m ( z , k 2 ) = ce m ( 1 2 π z , θ ) ,
    lim 𝐸𝑠 ν m ( z , k 2 ) = se m ( 1 2 π z , θ ) ,
    24: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Luke (1969b, p. 306) gives coefficients in Chebyshev-series expansions that cover ζ ( s ) for 0 s 1 (15D), ζ ( s + 1 ) for 0 s 1 (20D), and ln ξ ( 1 2 + i x ) 25.4) for 1 x 1 (20D). For errata see Piessens and Branders (1972).

  • Morris (1979) gives rational approximations for Li 2 ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 25: 25.12 Polylogarithms
    The notation Li 2 ( z ) was introduced in Lewin (1981) for a function discussed in Euler (1768) and called the dilogarithm in Hill (1828): … Other notations and names for Li 2 ( z ) include S 2 ( z ) (Kölbig et al. (1970)), Spence function Sp ( z ) (’t Hooft and Veltman (1979)), and L 2 ( z ) (Maximon (2003)). In the complex plane Li 2 ( z ) has a branch point at z = 1 . … When z = e i θ , 0 θ 2 π , (25.12.1) becomes … When s = 2 and e 2 π i a = z , (25.12.13) becomes (25.12.4). …
    26: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 91–94.
  • T. D. Newton (1952) Coulomb Functions for Large Values of the Parameter η . Technical report Atomic Energy of Canada Limited, Chalk River, Ontario.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 27: 36 Integrals with Coalescing Saddles
    28: Gergő Nemes
    As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
    29: Wolter Groenevelt
    As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
    30: 18.11 Relations to Other Functions
    §18.11(ii) Formulas of Mehler–Heine Type
    Jacobi
    Laguerre
    Hermite
    The limits (18.11.5)–(18.11.8) hold uniformly for z in any bounded subset of .