About the Project

limit of Laguerre polynomials

AdvancedHelp

(0.006 seconds)

1—10 of 25 matching pages

1: 18.6 Symmetry, Special Values, and Limits to Monomials
§18.6(ii) Limits to Monomials
18.6.5 lim α L n ( α ) ( α x ) L n ( α ) ( 0 ) = ( 1 x ) n .
2: 18.11 Relations to Other Functions
Laguerre
18.11.6 lim n 1 n α L n ( α ) ( z n ) = 1 z 1 2 α J α ( 2 z 1 2 ) .
3: 37.7 Parabolic Biangular Region with Weight Function ( 1 x ) α ( x y 2 ) β
37.7.20 2 k k ! lim β β 1 2 k P k , n α , β ( 1 β 1 x , β 1 2 y ) = L n k ( α ) ( x ) H k ( y ) , 0 k n ,
37.7.21 ( 1 ) n k lim β β 1 2 k R k , n α , β ( 1 β 1 x , β 1 2 y ) = L n k ( α + k + 1 2 ) ( x + y 2 ) ( x + y 2 ) 1 2 k P k ( α , α ) ( y x + y 2 ) , 0 k n .
37.7.24 ( 1 ) n k lim α α 1 2 k P k , n α , β ( α 1 x , α 1 2 y ) = L n k ( β + k + 1 2 ) ( x ) x 1 2 k P k ( β , β ) ( x 1 2 y ) , 0 k n ,
37.7.25 2 k k ! lim α α 1 2 k R k , n α , β ( α 1 x , α 1 2 y ) = L n k ( β ) ( x y 2 ) H k ( y ) , 0 k n .
4: 18.7 Interrelations and Limit Relations
18.7.21 lim β P n ( α , β ) ( 1 ( 2 x / β ) ) = L n ( α ) ( x ) .
18.7.22 lim α P n ( α , β ) ( ( 2 x / α ) 1 ) = ( 1 ) n L n ( β ) ( x ) .
18.7.26 lim α ( 2 α ) 1 2 n L n ( α ) ( ( 2 α ) 1 2 x + α ) = ( 1 ) n n ! H n ( x ) .
5: Bibliography C
  • F. Calogero (1978) Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial L n α ( x )  as the index α  and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Lett. Nuovo Cimento (2) 23 (3), pp. 101–102.
  • 6: 18.27 q -Hahn Class
    From Little q -Laguerre to Laguerre
    18.27.14_6 lim q 1 p n ( ( 1 q ) x ; q α , 0 ; q ) = n ! ( α + 1 ) n L n ( α ) ( x ) .
    From q -Laguerre to Laguerre
    18.27.17_3 lim q 1 L n ( α ) ( ( 1 q ) x ; q ) = L n ( α ) ( x ) .
    7: null
    error generating summary
    8: 37.18 Orthogonal Polynomials on Quadratic Domains
    37.18.14 𝐑 n ( ( 𝐱 , t ) , ( 𝐲 , s ) ) = 2 μ + d 5 2 Γ ( μ + 1 2 ) Γ ( μ + d 2 ) π Γ ( μ ) 1 1 0 π L n ( 2 μ + d 1 ) ( t + s + 2 ρ cos θ ) e ρ cos θ ( ρ sin θ ) 1 2 ( μ + d 3 ) J μ + d 3 2 ( ρ sin θ ) ( sin θ ) 2 μ + d 2 ( 1 u 2 ) μ 1 d θ d u , ρ = 1 2 ( t s + 𝐱 , 𝐲 + t 2 𝐱 2 t 2 𝐱 2 u ) ,
    9: 37.12 Orthogonal Polynomials on Quadratic Surfaces
    37.12.13 𝐑 n ( w 1 ; ( 𝐱 , t ) , ( 𝐲 , s ) ) = 1 π 2 d 4 2 Γ ( d 1 2 ) 0 π L n ( d 2 ) ( t + s + 2 ρ cos θ ) e ρ cos θ ( ρ sin θ ) 1 2 ( d 4 ) J d 4 2 ( ρ sin θ ) ( sin θ ) d 3 d θ , ρ = t s + 𝐱 , 𝐲 2 , d > 2 ,
    10: 18.30 Associated OP’s
    18.30.19 L n λ ( x ; c ) = lim ϕ 0 𝒫 n ( λ + 1 ) / 2 ( x 2 sin ϕ ; ϕ , c ) ,