About the Project

limit of Jacobi polynomials

AdvancedHelp

(0.007 seconds)

1—10 of 20 matching pages

1: 18.6 Symmetry, Special Values, and Limits to Monomials
§18.6(ii) Limits to Monomials
18.6.2 lim α P n ( α , β ) ( x ) P n ( α , β ) ( 1 ) = ( 1 + x 2 ) n ,
18.6.3 lim β P n ( α , β ) ( x ) P n ( α , β ) ( 1 ) = ( 1 x 2 ) n ,
2: 18.11 Relations to Other Functions
Jacobi
18.11.5 lim n 1 n α P n ( α , β ) ( 1 z 2 2 n 2 ) = lim n 1 n α P n ( α , β ) ( cos z n ) = 2 α z α J α ( z ) .
3: 18.34 Bessel Polynomials
18.34.8 lim α P n ( α , a α 2 ) ( 1 + α x ) P n ( α , a α 2 ) ( 1 ) = y n ( x ; a ) .
In this limit the finite system of Jacobi polynomials P n ( α , β ) ( x ) which is orthogonal on ( 1 , ) (see §18.3) tends to the finite system of Romanovski–Bessel polynomials which is orthogonal on ( 0 , ) (see (18.34.5_5)). …
4: 18.7 Interrelations and Limit Relations
§18.7 Interrelations and Limit Relations
18.7.21 lim β P n ( α , β ) ( 1 ( 2 x / β ) ) = L n ( α ) ( x ) .
18.7.22 lim α P n ( α , β ) ( ( 2 x / α ) 1 ) = ( 1 ) n L n ( β ) ( x ) .
18.7.23 lim α α 1 2 n P n ( α , α ) ( α 1 2 x ) = H n ( x ) 2 n n ! .
See §18.11(ii) for limit formulas of Mehler–Heine type.
5: 18.27 q -Hahn Class
From Big q -Jacobi to Jacobi
From Big q -Jacobi to Little q -Jacobi
From Little q -Jacobi to Jacobi
18.27.14_4 lim q 1 p n ( x ; q α , q β ; q ) = n ! ( α + 1 ) n P n ( α , β ) ( 1 2 x ) .
18.27.14_6 lim q 1 p n ( ( 1 q ) x ; q α , 0 ; q ) = n ! ( α + 1 ) n L n ( α ) ( x ) .
6: 18.17 Integrals
The case x = 1 is a limit case of an integral for Jacobi polynomials; see Askey and Razban (1972). …
7: Errata
We have also incorporated material on continuous q -Jacobi polynomials, and several new limit transitions. …
8: 18.21 Hahn Class: Interrelations
18.21.5 lim N Q n ( N x ; α , β , N ) = P n ( α , β ) ( 1 2 x ) P n ( α , β ) ( 1 ) .
9: 18.28 Askey–Wilson Class
18.28.26 lim λ 0 r n ( x / ( 2 λ ) ; λ , q a λ 1 , q c λ 1 , b c 1 λ | q ) = P n ( x ; a , b , c ; q ) .
18.28.27 lim λ 0 r n ( b q x / ( 2 λ ) ; λ , q b λ 1 , q , a | q ) = ( b ) n q n ( n + 1 ) / 2 ( q a ; q ) n ( q b ; q ) n p n ( x ; a , b ; q ) .
18.28.28 lim μ 0 , λ / μ 0 r n ( x / ( 2 λ μ ) ; λ / μ , q a μ / λ , 1 / ( λ μ ) , q b λ μ | q ) = p n ( x ; a , b ; q ) .
18.28.30 lim q 1 P n ( α , β ) ( x | q ) = P n ( α , β ) ( x ) .
10: 18.10 Integral Representations
Ultraspherical
Legendre
Generalizations of (18.10.1) for P n ( α , β ) are given in Gasper (1975, (6),(8)) and Koornwinder (1975a, (5.7),(5.8)). …
Jacobi
for the Jacobi, Laguerre, and Hermite polynomials. …