About the Project

inversion formula

AdvancedHelp

(0.002 seconds)

21—30 of 56 matching pages

21: 6.14 Integrals
6.14.3 0 e a t si ( t ) d t = 1 a arctan a , a > 0 .
22: 6.18 Methods of Computation
For large x and | z | , expansions in inverse factorial series (§6.10(i)) or asymptotic expansions (§6.12) are available. …Also, other ranges of ph z can be covered by use of the continuation formulas of §6.4. … For example, the Gauss–Laguerre formula3.5(v)) can be applied to (6.2.2); see Todd (1954) and Tseng and Lee (1998). For an application of the Gauss–Legendre formula3.5(v)) see Tooper and Mark (1968). …
23: 16.15 Integral Representations and Integrals
For these and other formulas, including double Mellin–Barnes integrals, see Erdélyi et al. (1953a, §5.8). …For inverse Laplace transforms of Appell functions see Prudnikov et al. (1992b, §3.40).
24: Bibliography C
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • L. Carlitz (1963) The inverse of the error function. Pacific J. Math. 13 (2), pp. 459–470.
  • B. C. Carlson (2008) Power series for inverse Jacobian elliptic functions. Math. Comp. 77 (263), pp. 1615–1621.
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • R. Cools (2003) An encyclopaedia of cubature formulas. J. Complexity 19 (3), pp. 445–453.
  • 25: Bibliography S
  • H. E. Salzer (1955) Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms. Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • R. Spira (1971) Calculation of the gamma function by Stirling’s formula. Math. Comp. 25 (114), pp. 317–322.
  • A. Strecok (1968) On the calculation of the inverse of the error function. Math. Comp. 22 (101), pp. 144–158.
  • A. H. Stroud and D. Secrest (1966) Gaussian Quadrature Formulas. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 26: 19.26 Addition Theorems
    §19.26(i) General Formulas
    19.26.11 R C ( x + λ , y + λ ) + R C ( x + μ , y + μ ) = R C ( x , y ) ,
    §19.26(iii) Duplication Formulas
    The equations inverse to z + λ = ( z + x ) ( z + y ) and the two other equations obtained by permuting x , y , z (see (19.26.19)) are …
    19.26.25 R C ( x , y ) = 2 R C ( x + λ , y + λ ) , λ = y + 2 x y .
    27: Bibliography
  • M. J. Ablowitz and P. A. Clarkson (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge.
  • M. J. Ablowitz and H. Segur (1981) Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, Vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • K. Aomoto (1987) Special value of the hypergeometric function F 2 3 and connection formulae among asymptotic expansions. J. Indian Math. Soc. (N.S.) 51, pp. 161–221.
  • T. M. Apostol (1985a) Formulas for higher derivatives of the Riemann zeta function. Math. Comp. 44 (169), pp. 223–232.
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • 28: 1.2 Elementary Algebra
    where det ( 𝐀 ) is defined by the Leibniz formula
    The Inverse
    If det( 𝐀 ) 0 , 𝐀 has a unique inverse, 𝐀 1 , such that … has a unique solution, 𝐛 = 𝐀 1 𝐜 . … Formula (1.2.77) is more generally valid for all square matrices 𝐀 , not necessarily non-defective, see Hall (2015, Thm 2.12).
    29: 22.20 Methods of Computation
    22.20.4 ϕ n 1 = 1 2 ( ϕ n + arcsin ( c n a n sin ϕ n ) ) ,
    and the inverse sine has its principal value (§4.23(ii)). …This formula for dn becomes unstable near x = K . …
    §22.20(v) Inverse Functions
    30: 22.21 Tables
    Spenceley and Spenceley (1947) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) , am ( K x , k ) , ( K x , k ) for arcsin k = 1 ( 1 ) 89 and x = 0 ( 1 90 ) 1 to 12D, or 12 decimals of a radian in the case of am ( K x , k ) . … Tables of theta functions (§20.15) can also be used to compute the twelve Jacobian elliptic functions by application of the quotient formulas given in §22.2.