About the Project

inverse trigonometric functions

AdvancedHelp

(0.016 seconds)

21—30 of 100 matching pages

21: 19.11 Addition Theorems
β–Ί
19.11.6_5 R C ⁑ ( Ξ³ Ξ΄ , Ξ³ ) = 1 Ξ΄ ⁒ arctan ⁑ ( Ξ΄ ⁒ sin ⁑ ΞΈ ⁒ sin ⁑ Ο• ⁒ sin ⁑ ψ Ξ± 2 1 Ξ± 2 ⁒ cos ⁑ ΞΈ ⁒ cos ⁑ Ο• ⁒ cos ⁑ ψ ) .
22: 14.15 Uniform Asymptotic Approximations
β–Ί
14.15.21 ( y α 2 ) 1 / 2 α ⁒ arctan ⁑ ( ( y α 2 ) 1 / 2 α ) = arccos ⁑ ( x ( 1 α 2 ) 1 / 2 ) α 2 ⁒ arccos ⁑ ( ( 1 + α 2 ) ⁒ x 2 1 + α 2 ( 1 α 2 ) ⁒ ( 1 x 2 ) ) , x ( 1 α 2 ) 1 / 2 , y α 2 ,
β–Ίwhere the inverse trigonometric functions take their principal values (§4.23(ii)). … β–Ί
14.15.27 1 2 ⁒ ΢ ⁒ ( ΢ 2 α 2 ) 1 / 2 1 2 ⁒ α 2 ⁒ arccosh ⁑ ( ΢ α ) = ( 1 a 2 ) 1 / 2 ⁒ arctanh ⁑ ( 1 x ⁒ ( x 2 a 2 1 a 2 ) 1 / 2 ) arccosh ⁑ ( x a ) , a x < 1 , α ΢ < ,
β–Ί
14.15.28 1 2 ⁒ α 2 ⁒ arcsin ⁑ ( ΢ α ) + 1 2 ⁒ ΢ ⁒ ( α 2 ΢ 2 ) 1 / 2 = arcsin ⁑ ( x a ) ( 1 a 2 ) 1 / 2 ⁒ arctan ⁑ ( x ⁒ ( 1 a 2 a 2 x 2 ) 1 / 2 ) , a x a , α ΢ α ,
β–ΊThe inverse hyperbolic and trigonometric functions take their principal values (§§4.23(ii), 4.37(ii)). …
23: 19.30 Lengths of Plane Curves
β–Ί
19.30.12 s = a ⁒ F ⁑ ( Ο• , 1 / 2 ) , Ο• = arcsin ⁑ 2 / ( q + 1 ) = arccos ⁑ ( tan ⁑ ΞΈ ) .
24: 13.21 Uniform Asymptotic Approximations for Large ΞΊ
β–Ί
13.21.12 ΞΊ ⁒ ΞΆ 4 ⁒ ΞΌ 2 2 ⁒ ΞΌ ⁒ arctan ⁑ ( ΞΊ ⁒ ΞΆ 4 ⁒ ΞΌ 2 2 ⁒ ΞΌ ) = 1 2 ⁒ ( X Ο€ ⁒ ΞΌ ) ΞΌ ⁒ arctan ⁑ ( x ⁒ ΞΊ 2 ⁒ ΞΌ 2 ΞΌ ⁒ X ) + ΞΊ ⁒ arcsin ⁑ ( X 2 ⁒ ΞΊ 2 ΞΌ 2 ) , 2 ⁒ ΞΊ 2 ⁒ ΞΊ 2 ΞΌ 2 x < 2 ⁒ ΞΊ + 2 ⁒ ΞΊ 2 ΞΌ 2 .
β–Ί
13.21.20 ΢ ^ = ( 3 2 ⁒ κ ⁒ ( 1 2 ⁒ X + 2 ⁒ μ ⁒ arctan ⁑ ( x ⁒ κ x ⁒ κ 2 μ 2 2 ⁒ μ 2 μ ⁒ X ) + κ ⁒ arccos ⁑ ( x 2 ⁒ κ 2 ⁒ κ 2 μ 2 ) ) ) 2 / 3 , 2 ⁒ κ 2 ⁒ κ 2 μ 2 < x 2 ⁒ κ + 2 ⁒ κ 2 μ 2 ,
25: 22.14 Integrals
β–Ί
22.14.2 cn ⁑ ( x , k ) ⁒ d x = k 1 ⁒ Arccos ⁑ ( dn ⁑ ( x , k ) ) ,
β–Ί
22.14.3 dn ⁑ ( x , k ) ⁒ d x = Arcsin ⁑ ( sn ⁑ ( x , k ) ) = am ⁑ ( x , k ) .
β–ΊThe branches of the inverse trigonometric functions are chosen so that they are continuous. … β–Ί
22.14.5 sd ⁑ ( x , k ) ⁒ d x = ( k ⁒ k ) 1 ⁒ Arcsin ⁑ ( k ⁒ cd ⁑ ( x , k ) ) ,
β–ΊAgain, the branches of the inverse trigonometric functions must be continuous. …
26: 15.4 Special Cases
β–Ί
15.4.3 F ⁑ ( 1 2 , 1 ; 3 2 ; z 2 ) = z 1 ⁒ arctan ⁑ z ,
β–Ί
15.4.4 F ⁑ ( 1 2 , 1 2 ; 3 2 ; z 2 ) = z 1 ⁒ arcsin ⁑ z ,
27: 4.39 Continued Fractions
β–Ί
4.39.2 arcsinh ⁑ z 1 + z 2 = z 1 + 1 2 ⁒ z 2 3 + 1 2 ⁒ z 2 5 + 3 4 ⁒ z 2 7 + 3 4 ⁒ z 2 9 + β‹― ,
β–Ί
4.39.3 arctanh ⁑ z = z 1 z 2 3 4 ⁒ z 2 5 9 ⁒ z 2 7 β‹― ,
28: 13.20 Uniform Asymptotic Approximations for Large ΞΌ
β–Ί
13.20.9 ΢ ⁒ ΢ 2 + α 2 + α 2 ⁒ arcsinh ⁑ ( ΢ α ) = X μ 2 ⁒ κ μ ⁒ ln ⁑ ( X + x 2 ⁒ κ 2 ⁒ μ 2 κ 2 ) 2 ⁒ ln ⁑ ( μ ⁒ X + 2 ⁒ μ 2 κ ⁒ x x ⁒ μ 2 κ 2 ) .
β–Ί
13.20.13 ΢ ⁒ ΢ 2 α 2 α 2 ⁒ arccosh ⁑ ( ΢ α ) = X μ 2 ⁒ κ μ ⁒ ln ⁑ ( X + x 2 ⁒ κ 2 ⁒ κ 2 μ 2 ) 2 ⁒ ln ⁑ ( κ ⁒ x μ ⁒ X 2 ⁒ μ 2 x ⁒ κ 2 μ 2 ) , x 2 ⁒ κ + 2 ⁒ κ 2 μ 2 ,
β–Ί
13.20.14 ΢ ⁒ α 2 ΢ 2 + α 2 ⁒ arcsin ⁑ ( ΢ α ) = X μ + 2 ⁒ κ μ ⁒ arctan ⁑ ( x 2 ⁒ κ X ) 2 ⁒ arctan ⁑ ( κ ⁒ x 2 ⁒ μ 2 μ ⁒ X ) , 2 ⁒ κ 2 ⁒ κ 2 μ 2 x 2 ⁒ κ + 2 ⁒ κ 2 μ 2 ,
β–Ί
13.20.15 ΢ ⁒ ΢ 2 α 2 α 2 ⁒ arccosh ⁑ ( ΢ α ) = X μ + 2 ⁒ κ μ ⁒ ln ⁑ ( 2 ⁒ κ X x 2 ⁒ κ 2 μ 2 ) + 2 ⁒ ln ⁑ ( μ ⁒ X + 2 ⁒ μ 2 κ ⁒ x x ⁒ κ 2 μ 2 ) , 0 < x 2 ⁒ κ 2 ⁒ κ 2 μ 2 ,
29: Guide to Searching the DLMF
β–Ί
  • All the inverse trigonometric functions (arcsin vs. Arcsin, etc.).

  • 30: 10.68 Modulus and Phase Functions
    §10.68 Modulus and Phase Functions
    β–Ί
    §10.68(i) Definitions
    β–Ί
    §10.68(ii) Basic Properties
    β–Ί
    §10.68(iii) Asymptotic Expansions for Large Argument
    β–ΊAdditional properties of the modulus and phase functions are given in Young and Kirk (1964, pp. xi–xv). …