About the Project

invariants

AdvancedHelp

(0.000 seconds)

21—30 of 38 matching pages

21: 29.2 Differential Equations
β–Ί
29.2.9 d 2 w d η 2 + ( g ν ⁒ ( ν + 1 ) ⁒ ⁑ ( η ) ) ⁒ w = 0 ,
β–Ί β–ΊFor the Weierstrass function see §23.2(ii). …
22: 23.22 Methods of Computation
β–ΊThe modular functions Ξ» ⁑ ( Ο„ ) , J ⁑ ( Ο„ ) , and Ξ· ⁑ ( Ο„ ) are also obtainable in a similar manner from their definitions in §23.15(ii). … β–ΊThe corresponding values of e 1 ⁑ , e 2 ⁑ , e 3 ⁑ are calculated from (23.6.2)–(23.6.4), then g 2 ⁑ and g 3 ⁑ are obtained from (23.3.6) and (23.3.7). β–Ί
Starting from Invariants
β–ΊSuppose that the invariants g 2 ⁑ = c , g 3 ⁑ = d , are given, for example in the differential equation (23.3.10) or via coefficients of an elliptic curve (§23.20(ii)). … β–ΊAssume c = g 2 ⁑ = 4 ⁒ ( 3 2 ⁒ i ) and d = g 3 ⁑ = 4 ⁒ ( 4 2 ⁒ i ) . …
23: 23.20 Mathematical Applications
β–ΊPoints P = ( x , y ) on the curve can be parametrized by x = ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) , 2 ⁒ y = ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) , where g 2 ⁑ = 4 ⁒ a and g 3 ⁑ = 4 ⁒ b : in this case we write P = P ⁑ ( z ) . …
24: 31.2 Differential Equations
β–Ί
31.2.10 w ⁑ ( ξ ) = ( ⁑ ( ξ ) e 3 ⁑ ) ( 1 2 ⁒ γ ) / 4 ⁒ ( ⁑ ( ξ ) e 2 ⁑ ) ( 1 2 ⁒ δ ) / 4 ⁒ ( ⁑ ( ξ ) e 1 ⁑ ) ( 1 2 ⁒ ϡ ) / 4 ⁒ W ⁑ ( ξ ) ,
β–Ί
31.2.11 d 2 W / d ΞΎ 2 + ( H + b 0 ⁒ ⁑ ( ΞΎ ) + b 1 ⁒ ⁑ ( ΞΎ + Ο‰ 1 ) + b 2 ⁒ ⁑ ( ΞΎ + Ο‰ 2 ) + b 3 ⁒ ⁑ ( ΞΎ + Ο‰ 3 ) ) ⁒ W = 0 ,
25: 19.25 Relations to Other Functions
β–Ίthen the five nontrivial permutations of x , y , z that leave R F invariant change k 2 ( = ( z y ) / ( z x ) ) into 1 / k 2 , k 2 , 1 / k 2 , k 2 / k 2 , k 2 / k 2 , and sin ⁑ Ο• ( = ( z x ) / z ) into k ⁒ sin ⁑ Ο• , i ⁒ tan ⁑ Ο• , i ⁒ k ⁒ tan ⁑ Ο• , ( k ⁒ sin ⁑ Ο• ) / 1 k 2 ⁒ sin 2 ⁑ Ο• , i ⁒ k ⁒ sin ⁑ Ο• / 1 k 2 ⁒ sin 2 ⁑ Ο• . … β–Ί β–Ί
19.25.37 ΞΆ ⁑ ( z + 2 ⁒ Ο‰ ) + ( z + 2 ⁒ Ο‰ ) ⁒ ⁑ ( z ) = ± 2 ⁒ R G ⁑ ( ⁑ ( z ) e 1 ⁑ , ⁑ ( z ) e 2 ⁑ , ⁑ ( z ) e 3 ⁑ ) ,
β–Ί
19.25.40 z + 2 ⁒ Ο‰ = ± Οƒ ⁑ ( z ) ⁒ R F ⁑ ( Οƒ 1 2 ⁑ ( z ) , Οƒ 2 2 ⁑ ( z ) , Οƒ 3 2 ⁑ ( z ) ) ,
β–Ί
19.25.41 Οƒ j ⁑ ( z ) = exp ⁑ ( Ξ· j ⁒ z ) ⁒ Οƒ ⁑ ( z + Ο‰ j ) / Οƒ ⁑ ( Ο‰ j ) , j = 1 , 2 , 3 ,
26: Bibliography V
β–Ί
  • A. van Wijngaarden (1953) On the coefficients of the modular invariant J ⁒ ( Ο„ ) . Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math. 15 56, pp. 389–400.
  • 27: Bibliography P
    β–Ί
  • M. D. Perlman and I. Olkin (1980) Unbiasedness of invariant tests for MANOVA and other multivariate problems. Ann. Statist. 8 (6), pp. 1326–1341.
  • 28: 28.5 Second Solutions fe n , ge n
    β–Ί(Other normalizations for C n ⁑ ( q ) and S n ⁑ ( q ) can be found in the literature, but most formulas—including connection formulas—are unaffected since fe n ⁑ ( z , q ) / C n ⁑ ( q ) and ge n ⁑ ( z , q ) / S n ⁑ ( q ) are invariant.) …
    29: Bibliography
    β–Ί
  • G. D. Anderson, M. K. Vamanamurthy, and M. K. Vuorinen (1997) Conformal Invariants, Inequalities, and Quasiconformal Maps. John Wiley & Sons Inc., New York.
  • 30: 18.38 Mathematical Applications
    β–ΊThe solved Schrödinger equations of §18.39(i) involve shape invariant potentials, and thus are in the family of supersymmetric or SUSY potentials. …