About the Project

integral%20equation%20for%20Lam%C3%A9%20functions

AdvancedHelp

(0.008 seconds)

11—20 of 989 matching pages

11: 15.10 Hypergeometric Differential Equation
β–Ί
15.10.1 z ⁒ ( 1 z ) ⁒ d 2 w d z 2 + ( c ( a + b + 1 ) ⁒ z ) ⁒ d w d z a ⁒ b ⁒ w = 0 .
β–Ί
Singularity z = 0
β–Ί
Singularity z = 1
β–Ί
Singularity z =
β–ΊThe ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
12: 30.2 Differential Equations
§30.2 Differential Equations
β–Ί
§30.2(i) Spheroidal Differential Equation
β–Ίβ–ΊThe Liouville normal form of equation (30.2.1) is … β–ΊIf Ξ³ = 0 , Equation (30.2.4) is satisfied by spherical Bessel functions; see (10.47.1).
13: 36.2 Catastrophes and Canonical Integrals
§36.2 Catastrophes and Canonical Integrals
β–Ί
Canonical Integrals
β–Ί Ξ¨ 1 is related to the Airy function9.2): … … β–Ί
§36.2(iii) Symmetries
14: 28.2 Definitions and Basic Properties
β–Ί
28.2.1 w ′′ + ( a 2 ⁒ q ⁒ cos ⁑ ( 2 ⁒ z ) ) ⁒ w = 0 .
β–ΊThis is the characteristic equation of Mathieu’s equation (28.2.1). … β–Ί
§28.2(iv) Floquet Solutions
β–Ί
§28.2(vi) Eigenfunctions
β–ΊFor simple roots q of the corresponding equations (28.2.21) and (28.2.22), the functions are made unique by the normalizations …
15: 32.2 Differential Equations
§32.2 Differential Equations
β–ΊThe six Painlevé equations P I P VI  are as follows: … β–ΊThe fifty equations can be reduced to linear equations, solved in terms of elliptic functions (Chapters 22 and 23), or reduced to one of P I P VI . … β–Ί
§32.2(ii) Renormalizations
β–Ί
16: 28.20 Definitions and Basic Properties
β–Ί
§28.20(i) Modified Mathieu’s Equation
β–ΊWhen z is replaced by ± i ⁒ z , (28.2.1) becomes the modified Mathieu’s equation: β–Ί
28.20.1 w ′′ ( a 2 ⁒ q ⁒ cosh ⁑ ( 2 ⁒ z ) ) ⁒ w = 0 ,
β–ΊThen from §2.7(ii) it is seen that equation (28.20.2) has independent and unique solutions that are asymptotic to ΞΆ 1 / 2 ⁒ e ± 2 ⁒ i ⁒ h ⁒ ΞΆ as ΞΆ in the respective sectors | ph ⁑ ( βˆ“ i ⁒ ΞΆ ) | 3 2 ⁒ Ο€ Ξ΄ , Ξ΄ being an arbitrary small positive constant. … β–Ί
§28.20(iv) Radial Mathieu Functions Mc n ( j ) , Ms n ( j )
17: 8.26 Tables
β–Ί
  • Khamis (1965) tabulates P ⁑ ( a , x ) for a = 0.05 ⁒ ( .05 ) ⁒ 10 ⁒ ( .1 ) ⁒ 20 ⁒ ( .25 ) ⁒ 70 , 0.0001 x 250 to 10D.

  • β–Ί
    §8.26(iv) Generalized Exponential Integral
    β–Ί
  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ⁑ ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ⁒ ( .01 ) ⁒ 2 to 7D; also ( x + n ) ⁒ e x ⁒ E n ⁑ ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ⁒ ( .01 ) ⁒ 0.1 ⁒ ( .05 ) ⁒ 0.5 to 6S.

  • β–Ί
  • Pagurova (1961) tabulates E n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 20 , x = 0 ⁒ ( .01 ) ⁒ 2 ⁒ ( .1 ) ⁒ 10 to 4-9S; e x ⁒ E n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 10 , x = 10 ⁒ ( .1 ) ⁒ 20 to 7D; e x ⁒ E p ⁑ ( x ) for p = 0 ⁒ ( .1 ) ⁒ 1 , x = 0.01 ⁒ ( .01 ) ⁒ 7 ⁒ ( .05 ) ⁒ 12 ⁒ ( .1 ) ⁒ 20 to 7S or 7D.

  • β–Ί
  • Zhang and Jin (1996, Table 19.1) tabulates E n ⁑ ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ⁒ ( .1 ) ⁒ 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 18: 36 Integrals with Coalescing Saddles
    Chapter 36 Integrals with Coalescing Saddles
    19: 20 Theta Functions
    Chapter 20 Theta Functions
    20: 6.19 Tables
    β–Ί
    §6.19(ii) Real Variables
    β–Ί
  • Abramowitz and Stegun (1964, Chapter 5) includes x 1 ⁒ Si ⁑ ( x ) , x 2 ⁒ Cin ⁑ ( x ) , x 1 ⁒ Ein ⁑ ( x ) , x 1 ⁒ Ein ⁑ ( x ) , x = 0 ⁒ ( .01 ) ⁒ 0.5 ; Si ⁑ ( x ) , Ci ⁑ ( x ) , Ei ⁑ ( x ) , E 1 ⁑ ( x ) , x = 0.5 ⁒ ( .01 ) ⁒ 2 ; Si ⁑ ( x ) , Ci ⁑ ( x ) , x ⁒ e x ⁒ Ei ⁑ ( x ) , x ⁒ e x ⁒ E 1 ⁑ ( x ) , x = 2 ⁒ ( .1 ) ⁒ 10 ; x ⁒ f ⁑ ( x ) , x 2 ⁒ g ⁑ ( x ) , x ⁒ e x ⁒ Ei ⁑ ( x ) , x ⁒ e x ⁒ E 1 ⁑ ( x ) , x 1 = 0 ⁒ ( .005 ) ⁒ 0.1 ; Si ⁑ ( Ο€ ⁒ x ) , Cin ⁑ ( Ο€ ⁒ x ) , x = 0 ⁒ ( .1 ) ⁒ 10 . Accuracy varies but is within the range 8S–11S.

  • β–Ί
  • Zhang and Jin (1996, pp. 652, 689) includes Si ⁑ ( x ) , Ci ⁑ ( x ) , x = 0 ⁒ ( .5 ) ⁒ 20 ⁒ ( 2 ) ⁒ 30 , 8D; Ei ⁑ ( x ) , E 1 ⁑ ( x ) , x = [ 0 , 100 ] , 8S.

  • β–Ί
  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z ⁒ e z ⁒ E 1 ⁑ ( z ) , x = 19 ⁒ ( 1 ) ⁒ 20 , y = 0 ⁒ ( 1 ) ⁒ 20 , 6D; e z ⁒ E 1 ⁑ ( z ) , x = 4 ⁒ ( .5 ) 2 , y = 0 ⁒ ( .2 ) ⁒ 1 , 6D; E 1 ⁑ ( z ) + ln ⁑ z , x = 2 ⁒ ( .5 ) ⁒ 2.5 , y = 0 ⁒ ( .2 ) ⁒ 1 , 6D.

  • β–Ί
  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ⁑ ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ⁒ ( .5 ) ⁒ 1 ⁒ ( 1 ) ⁒ 5 ⁒ ( 5 ) ⁒ 30 , 50 , 100 , 8S.