About the Project

inner product

AdvancedHelp

(0.001 seconds)

1—10 of 26 matching pages

1: 37.17 Hermite Polynomials on d
§37.17(vi) Hermite Polynomials for Weight Function e 𝐀 𝐱 , 𝐱
37.17.16 H 𝝂 ( 𝐱 ; 𝐀 ) = ( 1 ) | 𝝂 | e 𝐀 𝐱 , 𝐱 D 𝐱 𝝂 e 𝐀 𝐱 , 𝐱 ,
37.17.17 G 𝝂 ( 𝐀 1 𝐱 ; 𝐀 ) = H 𝝂 ( 𝐱 ; 𝐀 1 ) = ( 1 ) | 𝝂 | e 𝐀 1 𝐱 , 𝐱 D 𝐱 𝝂 e 𝐀 1 𝐱 , 𝐱 .
37.17.19 𝝂 0 d H 𝝂 ( 𝐱 ; 𝐀 ) 𝐲 𝝂 𝝂 ! = e 2 𝐀 𝐲 , 𝐱 𝐀 𝐲 , 𝐲 .
2: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
A complex linear vector space V is called an inner product space if an inner product u , v is defined for all u , v V with the properties: (i) u , v is complex linear in u ; (ii) u , v = v , u ¯ ; (iii) v , v 0 ; (iv) if v , v = 0 then v = 0 . …Two elements u and v in V are orthogonal if u , v = 0 . …
1.18.3 c n = v , v n .
1.18.12 f , g = a b f ( x ) g ( x ) ¯ d α ( x ) ,
The adjoint T of T does satisfy T f , g = f , T g where f , g = a b f ( x ) g ( x ) d x . …
3: 1.2 Elementary Algebra
1.2.41 𝐮 , 𝐯 = 𝐯 , 𝐮 ¯ ,
1.2.42 α 𝐮 , β 𝐯 = α β ¯ 𝐮 , 𝐯 ,
1.2.43 𝐯 , 𝐯 = 0 ,
1.2.44 𝐮 , 𝐯 = 0 .
1.2.46 𝐯 = 𝐯 2 = 𝐯 , 𝐯 ,
4: 37.18 Orthogonal Polynomials on Quadratic Domains
On the quadratic domain 𝕍 d + 1 , define the inner product
37.18.8 [ t ( 1 t ) D t t + 2 ( 1 t ) 𝐱 , 𝐱 D t + t Δ 𝐱 𝐱 , 𝐱 2 + ( 2 μ + d ) D t ( 2 μ + γ + d + 1 ) ( 𝐱 , 𝐱 + t D t ) + 𝐱 , 𝐱 ] u = n ( n + 2 μ + γ + d ) u , u 𝒱 n ( 𝕍 d + 1 , W μ , 0 , γ ) , d 2 , μ > 1 2 , γ > 1 ,
37.18.10 ζ ( 𝐱 , t , 𝐲 , s ; 𝐯 ) = v 1 1 2 ( s t + 𝐱 , 𝐲 + x d + 1 y d + 1 ) + v 2 1 t 1 s
37.18.13 [ t ( Δ 𝐱 + D t t ) + 2 𝐱 , 𝐱 D t 𝐱 , 𝐱 + ( 2 μ + d t ) D t ] u = n u , u 𝒱 n ( 𝕍 d + 1 , W μ , 0 ) , μ > 1 2 ,
37.18.14 𝐑 n ( ( 𝐱 , t ) , ( 𝐲 , s ) ) = 2 μ + d 5 2 Γ ( μ + 1 2 ) Γ ( μ + d 2 ) π Γ ( μ ) 1 1 0 π L n ( 2 μ + d 1 ) ( t + s + 2 ρ cos θ ) e ρ cos θ ( ρ sin θ ) 1 2 ( μ + d 3 ) J μ + d 3 2 ( ρ sin θ ) ( sin θ ) 2 μ + d 2 ( 1 u 2 ) μ 1 d θ d u , ρ = 1 2 ( t s + 𝐱 , 𝐲 + t 2 𝐱 2 t 2 𝐱 2 u ) ,
5: 1.1 Special Notation
x , y real variables.
f , g inner, or scalar, product for real or complex vectors or functions.
6: 37.19 Other Orthogonal Polynomials of d Variables
37.19.1 T j f ( 𝐱 ) = f x j + 𝐯 R + κ 𝐯 f ( 𝐱 ) f ( 𝐱 σ 𝐯 ) 𝐱 , 𝐯 v j ,
where v is the th component of 𝐯 and 𝐱 σ 𝐯 denotes the reflection 𝐱 σ 𝐯 = 𝐱 2 𝐱 , 𝐯 𝐯 , 𝐯 𝐯 . These operators commute; that is, T T j = T j T for 1 < j d . …They are orthogonal with respect to the inner product
37.19.4 w κ ( 𝐱 ) = 𝐯 R + | 𝐱 , 𝐯 | 2 κ 𝐯 .
There are many such inner products. …
7: 37.15 Orthogonal Polynomials on the Ball
37.15.13 ( 1 2 𝐱 , 𝐲 + 𝐲 2 ) α 1 2 d = 𝝂 0 d 2 | 𝝂 | ( α + 1 2 d ) | 𝝂 | 𝝂 ! 𝐲 𝝂 V 𝝂 ( α + 1 2 ) ( 𝐱 ) , 𝐲 d , 𝐲 < 1 .
37.15.15 ( ( 1 𝐱 , 𝐲 ) 2 + 𝐲 2 ( 1 𝐱 2 ) ) α 1 2 = 𝝂 0 d ( 1 ) | 𝝂 | ( 2 α + 1 ) | 𝝂 | 2 | 𝝂 | ( α + 1 ) | 𝝂 | 𝝂 ! U 𝝂 ( α + 1 2 ) ( 𝐱 ) 𝐲 𝝂 , 𝐲 d , 𝐲 < 1 .
37.15.18 𝐑 n α ( 𝐱 , 𝐲 ) = 1 1 Z n α + 1 2 d ( 𝐱 , 𝐲 + t 1 𝐱 2 1 𝐲 2 ) ( 1 t 2 ) α 1 2 1 1 ( 1 t 2 ) α 1 2 d t d t , 𝐱 , 𝐲 𝔹 d , α > 1 2 .
37.15.19 n 0 ( 𝐱 , 𝐲 ) = 2 n + d d 𝕊 d 1 C n ( 1 2 d ) ( 𝐱 , ξ ) C n ( 1 2 d ) ( 𝐲 , ξ ) d σ ( ξ ) , 𝐱 , 𝐲 𝔹 d .
8: 37.2 General Orthogonal Polynomials of Two Variables
Then … Then necessarily P k , n , Q k , n W 0 ( k = 0 , 1 , , n ). …
37.2.5 P k , n , P j , n W = h k , n δ k , j
9: 1.3 Determinants, Linear Operators, and Spectral Expansions
The adjoint of a matrix 𝐀 is the matrix 𝐀 such that 𝐀 𝐚 , 𝐛 = 𝐚 , 𝐀 𝐛 for all 𝐚 , 𝐛 𝐄 n . …
1.3.20 𝐮 = i = 1 n c i 𝐚 i , c i = 𝐮 , 𝐚 i .
10: 37.11 Spherical Harmonics
Define an (Hermitian) inner product
37.11.10 f , g 𝕊 d 1 = 1 ω d 𝕊 d 1 f ( ξ ) g ( ξ ) ¯ d σ ( ξ )
This inner product is normalized such that 1 𝕊 d 1 , 1 𝕊 d 1 𝕊 d 1 = 1 . …
37.11.25 𝐊 ( ξ , η ) = k ( ξ , η ) , ξ , η 𝕊 d 1 with innerproduct ξ , η ,
37.11.27 𝐑 n ( ξ , η ) = j = 1 N n d Y j ( ξ ) Y j ( η ) ¯ = N n d C n ( 1 2 ( d 2 ) ) ( ξ , η ) C n ( 1 2 ( d 2 ) ) ( 1 ) = Z n ( 1 2 ( d 2 ) ) ( ξ , η ) , ξ , η 𝕊 d 1 .