About the Project

inequalities

AdvancedHelp

(0.001 seconds)

21—30 of 63 matching pages

21: Bibliography N
  • E. Neuman (2004) Inequalities involving Bessel functions of the first kind. JIPAM. J. Inequal. Pure Appl. Math. 5 (4), pp. Article 94, 4 pp. (electronic).
  • E. Neuman (2013) Inequalities and bounds for the incomplete gamma function. Results Math. 63 (3-4), pp. 1209–1214.
  • G. Nikolov and V. Pillwein (2015) An extension of Turán’s inequality. Math. Inequal. Appl. 18 (1), pp. 321–335.
  • 22: Bibliography
  • H. Alzer and S. Qiu (2004) Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172 (2), pp. 289–312.
  • H. Alzer (1997a) A harmonic mean inequality for the gamma function. J. Comput. Appl. Math. 87 (2), pp. 195–198.
  • H. Alzer (1997b) On some inequalities for the incomplete gamma function. Math. Comp. 66 (218), pp. 771–778.
  • H. Alzer (2008) Gamma function inequalities. Numer. Algorithms 49 (1-4), pp. 53–84.
  • G. D. Anderson and M. K. Vamanamurthy (1985) Inequalities for elliptic integrals. Publ. Inst. Math. (Beograd) (N.S.) 37(51), pp. 61–63.
  • 23: Bille C. Carlson
    Also, the homogeneity of the R -function has led to a new type of mean value for several variables, accompanied by various inequalities. …
    24: Bibliography G
  • G. Gasper (1972) An inequality of Turán type for Jacobi polynomials. Proc. Amer. Math. Soc. 32, pp. 435–439.
  • L. Gatteschi (1987) New inequalities for the zeros of Jacobi polynomials. SIAM J. Math. Anal. 18 (6), pp. 1549–1562.
  • L. Gatteschi (1990) New inequalities for the zeros of confluent hypergeometric functions. In Asymptotic and computational analysis (Winnipeg, MB, 1989), pp. 175–192.
  • R. E. Gaunt (2014) Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420 (1), pp. 373–386.
  • W. Gautschi (1974) A harmonic mean inequality for the gamma function. SIAM J. Math. Anal. 5 (2), pp. 278–281.
  • 25: 1.3 Determinants, Linear Operators, and Spectral Expansions
    Hadamard’s Inequality
    26: 18.16 Zeros
    Inequalities
    Inequalities
    The constant j α , m 2 in (18.16.10) is the best possible since the ratio of the two sides of this inequality tends to 1 as n . … when α ( 1 2 , 1 2 ) . …
    27: 18.38 Mathematical Applications
    The Askey–Gasper inequality …also the case β = 0 of (18.14.26), was used in de Branges’ proof of the long-standing Bieberbach conjecture concerning univalent functions on the unit disk in the complex plane. …
    28: Bibliography L
  • A. Laforgia and M. E. Muldoon (1983) Inequalities and approximations for zeros of Bessel functions of small order. SIAM J. Math. Anal. 14 (2), pp. 383–388.
  • A. Laforgia and S. Sismondi (1988) Monotonicity results and inequalities for the gamma and error functions. J. Comput. Appl. Math. 23 (1), pp. 25–33.
  • A. Laforgia (1984) Further inequalities for the gamma function. Math. Comp. 42 (166), pp. 597–600.
  • A. Laforgia (1986) Inequalities for Bessel functions. J. Comput. Appl. Math. 15 (1), pp. 75–81.
  • L. Lorch (1984) Inequalities for ultraspherical polynomials and the gamma function. J. Approx. Theory 40 (2), pp. 115–120.
  • 29: 13.9 Zeros
    Inequalities for ϕ r are given in Gatteschi (1990), and identities involving infinite series of all of the complex zeros of M ( a , b , x ) are given in Ahmed and Muldoon (1980). … Inequalities for the zeros of U ( a , b , x ) are given in Gatteschi (1990). …
    30: 1.8 Fourier Series
    1.8.5 1 π π π | f ( x ) | 2 d x = 1 2 | a 0 | 2 + n = 1 ( | a n | 2 + | b n | 2 ) ,
    1.8.6 1 2 π π π | f ( x ) | 2 d x = n = | c n | 2 ,