About the Project

hyperbolic trigonometric functions

AdvancedHelp

(0.016 seconds)

11—20 of 123 matching pages

11: 4.40 Integrals
β–Ί
4.40.1 sinh ⁑ x ⁒ d x = cosh ⁑ x ,
β–Ί
4.40.2 cosh ⁑ x ⁒ d x = sinh ⁑ x ,
β–Ί
4.40.3 tanh ⁑ x ⁒ d x = ln ⁑ ( cosh ⁑ x ) .
β–Ί
4.40.4 csch ⁑ x ⁒ d x = ln ⁑ ( tanh ⁑ ( 1 2 ⁒ x ) ) , 0 < x < .
β–Ί
4.40.6 coth ⁑ x ⁒ d x = ln ⁑ ( sinh ⁑ x ) , 0 < x < .
12: 4.21 Identities
β–Ί
4.21.37 sin ⁑ z = sin ⁑ x ⁒ cosh ⁑ y + i ⁒ cos ⁑ x ⁒ sinh ⁑ y ,
β–Ί
4.21.38 cos ⁑ z = cos ⁑ x ⁒ cosh ⁑ y i ⁒ sin ⁑ x ⁒ sinh ⁑ y ,
β–Ί
4.21.39 tan ⁑ z = sin ⁑ ( 2 ⁒ x ) + i ⁒ sinh ⁑ ( 2 ⁒ y ) cos ⁑ ( 2 ⁒ x ) + cosh ⁑ ( 2 ⁒ y ) ,
β–Ί
4.21.40 cot ⁑ z = sin ⁑ ( 2 ⁒ x ) i ⁒ sinh ⁑ ( 2 ⁒ y ) cosh ⁑ ( 2 ⁒ y ) cos ⁑ ( 2 ⁒ x ) .
β–Ί
4.21.41 | sin ⁑ z | = ( sin 2 ⁑ x + sinh 2 ⁑ y ) 1 / 2 = ( 1 2 ⁒ ( cosh ⁑ ( 2 ⁒ y ) cos ⁑ ( 2 ⁒ x ) ) ) 1 / 2 ,
13: 4.37 Inverse Hyperbolic Functions
β–Ί
4.37.4 Arccsch ⁑ z = Arcsinh ⁑ ( 1 / z ) ,
β–ΊEach is two-valued on the corresponding cut(s), and each is real on the part of the real axis that remains after deleting the intersections with the corresponding cuts. … β–Ί
4.37.7 arccsch ⁑ z = arcsinh ⁑ ( 1 / z ) ,
β–Ί
4.37.8 arcsech ⁑ z = arccosh ⁑ ( 1 / z ) .
β–Ί
4.37.9 arccoth ⁑ z = arctanh ⁑ ( 1 / z ) , z ± 1 .
14: 28.23 Expansions in Series of Bessel Functions
β–Ί
28.23.2 me Ξ½ ⁑ ( 0 , h 2 ) ⁒ M Ξ½ ( j ) ⁑ ( z , h ) = n = ( 1 ) n ⁒ c 2 ⁒ n Ξ½ ⁑ ( h 2 ) ⁒ π’ž Ξ½ + 2 ⁒ n ( j ) ⁑ ( 2 ⁒ h ⁒ cosh ⁑ z ) ,
β–Ί
28.23.3 me Ξ½ ⁑ ( 0 , h 2 ) ⁒ M Ξ½ ( j ) ⁑ ( z , h ) = i ⁒ tanh ⁑ z ⁒ n = ( 1 ) n ⁒ ( Ξ½ + 2 ⁒ n ) ⁒ c 2 ⁒ n Ξ½ ⁑ ( h 2 ) ⁒ π’ž Ξ½ + 2 ⁒ n ( j ) ⁑ ( 2 ⁒ h ⁒ cosh ⁑ z ) ,
β–Ί
28.23.6 Mc 2 ⁒ m ( j ) ⁑ ( z , h ) = ( 1 ) m ⁒ ( ce 2 ⁒ m ⁑ ( 0 , h 2 ) ) 1 ⁒ β„“ = 0 ( 1 ) β„“ ⁒ A 2 ⁒ β„“ 2 ⁒ m ⁑ ( h 2 ) ⁒ π’ž 2 ⁒ β„“ ( j ) ⁑ ( 2 ⁒ h ⁒ cosh ⁑ z ) ,
β–Ί
28.23.10 Ms 2 ⁒ m + 1 ( j ) ⁑ ( z , h ) = ( 1 ) m ⁒ ( se 2 ⁒ m + 1 ⁑ ( 0 , h 2 ) ) 1 ⁒ tanh ⁑ z ⁒ β„“ = 0 ( 1 ) β„“ ⁒ ( 2 ⁒ β„“ + 1 ) ⁒ B 2 ⁒ β„“ + 1 2 ⁒ m + 1 ⁑ ( h 2 ) ⁒ π’ž 2 ⁒ β„“ + 1 ( j ) ⁑ ( 2 ⁒ h ⁒ cosh ⁑ z ) ,
β–Ί
28.23.12 Ms 2 ⁒ m + 2 ( j ) ⁑ ( z , h ) = ( 1 ) m ⁒ ( se 2 ⁒ m + 2 ⁑ ( 0 , h 2 ) ) 1 ⁒ tanh ⁑ z ⁒ β„“ = 0 ( 1 ) β„“ ⁒ ( 2 ⁒ β„“ + 2 ) ⁒ B 2 ⁒ β„“ + 2 2 ⁒ m + 2 ⁑ ( h 2 ) ⁒ π’ž 2 ⁒ β„“ + 2 ( j ) ⁑ ( 2 ⁒ h ⁒ cosh ⁑ z ) ,
15: 4.18 Inequalities
β–Ί
4.18.5 | sinh ⁑ y | | sin ⁑ z | cosh ⁑ y ,
β–Ί
4.18.6 | sinh ⁑ y | | cos ⁑ z | cosh ⁑ y ,
β–Ί
4.18.7 | csc ⁑ z | csch ⁑ | y | ,
β–Ί
4.18.8 | cos ⁑ z | cosh ⁑ | z | ,
β–Ί
4.18.9 | sin ⁑ z | sinh ⁑ | z | ,
16: 14.19 Toroidal (or Ring) Functions
β–Ί
14.19.4 P n 1 2 m ⁑ ( cosh ⁑ ΞΎ ) = Ξ“ ⁑ ( n + m + 1 2 ) ⁒ ( sinh ⁑ ΞΎ ) m 2 m ⁒ Ο€ 1 / 2 ⁒ Ξ“ ⁑ ( n m + 1 2 ) ⁒ Ξ“ ⁑ ( m + 1 2 ) ⁒ 0 Ο€ ( sin ⁑ Ο• ) 2 ⁒ m ( cosh ⁑ ΞΎ + cos ⁑ Ο• ⁒ sinh ⁑ ΞΎ ) n + m + ( 1 / 2 ) ⁒ d Ο• ,
β–Ί
14.19.5 𝑸 n 1 2 m ⁑ ( cosh ⁑ ΞΎ ) = Ξ“ ⁑ ( n + 1 2 ) Ξ“ ⁑ ( n + m + 1 2 ) ⁒ Ξ“ ⁑ ( n m + 1 2 ) ⁒ 0 cosh ⁑ ( m ⁒ t ) ( cosh ⁑ ΞΎ + cosh ⁑ t ⁒ sinh ⁑ ΞΎ ) n + ( 1 / 2 ) ⁒ d t , m < n + 1 2 .
β–Ί
14.19.6 𝑸 1 2 ΞΌ ⁑ ( cosh ⁑ ΞΎ ) + 2 ⁒ n = 1 Ξ“ ⁑ ( ΞΌ + n + 1 2 ) Ξ“ ⁑ ( ΞΌ + 1 2 ) ⁒ 𝑸 n 1 2 ΞΌ ⁑ ( cosh ⁑ ΞΎ ) ⁒ cos ⁑ ( n ⁒ Ο• ) = ( 1 2 ⁒ Ο€ ) 1 / 2 ⁒ ( sinh ⁑ ΞΎ ) ΞΌ ( cosh ⁑ ΞΎ cos ⁑ Ο• ) ΞΌ + ( 1 / 2 ) , ⁑ ΞΌ > 1 2 .
β–Ί β–Ί
17: 14.25 Integral Representations
β–Ί
14.25.1 P Ξ½ ΞΌ ⁑ ( z ) = ( z 2 1 ) ΞΌ / 2 2 Ξ½ ⁒ Ξ“ ⁑ ( ΞΌ Ξ½ ) ⁒ Ξ“ ⁑ ( Ξ½ + 1 ) ⁒ 0 ( sinh ⁑ t ) 2 ⁒ Ξ½ + 1 ( z + cosh ⁑ t ) Ξ½ + ΞΌ + 1 ⁒ d t , ⁑ ΞΌ > ⁑ Ξ½ > 1 ,
β–Ί
14.25.2 𝑸 Ξ½ ΞΌ ⁑ ( z ) = Ο€ 1 / 2 ⁒ ( z 2 1 ) ΞΌ / 2 2 ΞΌ ⁒ Ξ“ ⁑ ( ΞΌ + 1 2 ) ⁒ Ξ“ ⁑ ( Ξ½ ΞΌ + 1 ) ⁒ 0 ( sinh ⁑ t ) 2 ⁒ ΞΌ ( z + ( z 2 1 ) 1 / 2 ⁒ cosh ⁑ t ) Ξ½ + ΞΌ + 1 ⁒ d t , ⁑ ( Ξ½ + 1 ) > ⁑ ΞΌ > 1 2 ,
18: 28.32 Mathematical Applications
β–Ί
28.32.3 2 V ξ 2 + 2 V η 2 + 1 2 ⁒ c 2 ⁒ k 2 ⁒ ( cosh ⁑ ( 2 ⁒ ξ ) cos ⁑ ( 2 ⁒ η ) ) ⁒ V = 0 .
19: 13.24 Series
β–Ί
13.24.3 exp ⁑ ( 1 2 ⁒ z ⁒ ( coth ⁑ t 1 t ) ) ⁒ ( t sinh ⁑ t ) 1 2 ⁒ μ = s = 0 p s ( μ ) ⁒ ( z ) ⁒ ( t z ) s .
20: 29.5 Special Cases and Limiting Forms
β–Ί
29.5.5 lim k 1 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) 𝐸𝑐 Ξ½ m ⁑ ( 0 , k 2 ) = lim k 1 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) 𝐸𝑠 Ξ½ m + 1 ⁑ ( 0 , k 2 ) = 1 ( cosh ⁑ z ) ΞΌ ⁒ F ⁑ ( 1 2 ⁒ ΞΌ 1 2 ⁒ Ξ½ , 1 2 ⁒ ΞΌ + 1 2 ⁒ Ξ½ + 1 2 1 2 ; tanh 2 ⁑ z ) , m even,
β–Ί
29.5.6 lim k 1 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) d 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) / d z | z = 0 = lim k 1 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) d 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) / d z | z = 0 = tanh ⁑ z ( cosh ⁑ z ) ΞΌ ⁒ F ⁑ ( 1 2 ⁒ ΞΌ 1 2 ⁒ Ξ½ + 1 2 , 1 2 ⁒ ΞΌ + 1 2 ⁒ Ξ½ + 1 3 2 ; tanh 2 ⁑ z ) , m odd,